首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.  相似文献   

2.
Raman spectroscopy using 785 nm excitation was tested as a nondestructive method for determining the presence of the potential biomarker, usnic acid, in experimentally prepared mineral matrices. Investigated samples consisting of usnic acid mixed with powdered hydrothermal minerals, gypsum and calcite were studied. Various concentrations of usnic acid in the mineral matrix were studied to determine the detection limits of this biomarker. Usnic acid was mixed with gypsum (respectively, calcite) and covered by a UV-transparent crystal of gypsum (CaSO(4) x 2 H(2)O), thereby creating artificial inclusions similar to those which could be present in Martian minerals. A Raman usnic acid signal at the concentration level as low as 1 g kg(-1) was obtained in the powdered mineral matrix and 5 g kg(-1) when analyzed through the monocrystal. The number of registered usnic acid key Raman bands was dependent on the particular mineral matrix. If a similar concentration of usnic acid could persist in Martian samples, then Raman spectroscopy will be able to identify it. Obtained results will aid both in situ Raman analyses on Mars and on Earth.  相似文献   

3.
Two sulphate efflorescent evaporite mineral samples from Jaroso, Spain have been studied by scanning electron microscopy and Raman spectroscopy. SEM by comparison with known minerals shows the evaporite mineral is a mixture of halotrichite and jarosite, whilst the oxidised mineral is predominantly jarosite. SEM characterises the halotrichite as long narrow crystals and the jarosite as distorted rhombohedral crystals. Raman spectra of the sulphates of K, Mg, Fe(II), Fe(III) are compared with the spectra of halotrichite, jarosite and the two sulphate efflorescent samples. The efflorescent sample was proven by Raman spectroscopy to be a mixture of halotrichite and jarosite and the oxidised efflorescent sample to be jarosite and a complex mixture of sulphates.  相似文献   

4.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH4)Na(PO4)·4H2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm(-1) defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm(-1). Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO4(3-), H2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a 'cave' situation enables the detection of minerals, some of which may remain to be identified.  相似文献   

5.
The color varieties of spodumene (green spodumene, kunzite) from Nilaw mine (Nuristan, Afghanistan) have been investigated by microthermometry and Raman spectroscopy analyses. These minerals are rich in primary and secondary fluid inclusions. Measured values of temperature homogenization (T(h)) and pressure (P) for selected fluid-inclusion assemblages (I-IV) FIA in green spodumene and (I-II) FIA in kunzite ranges from 370 to 430°C, 1.16 to 1.44 kbar and 300 to 334°C, 0.81 to 1.12 kbar, respectively. The brine content and concentration varies from 4.3 to 6.6 wt.% eq. NaCl. Numerous and diverse mineral phases (quartz, feldspars, mica, beryl, zirconium, apatite, calcite, gypsum) present in this mineral as solid inclusions were studied by Raman microspectroscopy. Raman spectra of selected fluid, organic and solid inclusions were collected as line or rectangular maps and also depth profiles to study their size and contents. There appeared very interesting calcite (156, 283, 711 and 1085 cm(-1)), beryl (324, 397, 686, 1068 and 3610 cm(-1)), topaz (231, 285, 707, 780 and 910 cm(-1)) and spodumene (355, 707 and 1073 cm(-1)) inclusions accompanied by fluid and/or organic inclusions (liquid and gas hydrocarbons) with bands at 2350 cm(-1) (CO(2), N(2)), 2550 cm(-1) (H(2)S) and 2900 cm(-1) (C(2)H(6)-CH(3)). Some solid inclusions contain carbonaceous matter (D-band at ca. 1320 cm(-1) and/or G-band at ca. 1600 cm(-1)).  相似文献   

6.
Wall paintings spanning two millennia of Cretan painting history and technology were analysed in an effort to determine similarities and evolutions of painting materials and technology. A multi-technique approach was employed that combined the use of (a) laser-induced breakdown spectroscopy (LIBS) and Raman microspectroscopy, based on mobile instrumentation, appropriate for rapid, routine-level object characterization, and (b) non-destructive X-ray diffractometry (XRD), performed directly on the wall painting fragment, which provides detailed information on the minerals constituting the paint. Elemental analysis data obtained through LIBS were compared with molecular and crystal structure information from Raman spectroscopy and XRD. Cross-sections from selected samples were also investigated by means of optical microscopy and scanning electron microscopy coupled to micro-probe analysis and X-ray mapping that enabled identification of several mineral components of the paint confirming the results of the XRD analysis. In parallel, replica wall paintings, created with known pigments and binding media for reference purposes, were examined with optical microscopy and stain tested for organic materials. The overall study shows that the LIBS and Raman techniques offer key advantages, such as instrument mobility and speed of data collection and interpretation that are particularly important when dealing with on-site investigations. Thus, they are capable of providing important compositional information in an effective manner that enables quick surveying of wall paintings and permit targeted sample selection for further analysis by advanced laboratory techniques.  相似文献   

7.
Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG-MS identified two mass loss steps at 146 and 397 degrees C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 degrees C. Above 397 degrees C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 degrees C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.  相似文献   

8.
In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH(4))Na(PO(4))·4H(2)O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm(-1) (Cave) and 922 cm(-1) (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm(-1). Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO(4)(3-), H(2)O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.  相似文献   

9.
溴氧化铋/石墨烯可见光下光催化氧化脱硫的研究   总被引:1,自引:0,他引:1  
采用水热法制备了BiOBr/石墨光催化剂, 并利用X 射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、固体荧光(PL)和紫外-可见漫反射光谱(UV-vis DRS)等方法对其进行表征。以二苯并噻吩的环己烷溶液为模拟油品,考察反应温度、石墨烯负载量和氧化剂H2O2用量等条件对BiOBr/石墨光催化氧化脱除模拟油中DBT的性能的影响,不同模型化合物的光催化活性为DBT>4, 6-DMDBT>BT,根据实验结果提出了BiOBr/石墨光催化剂氧化DBT的机理。  相似文献   

10.
Raman spectroscopy of selected copper minerals of significance in corrosion   总被引:2,自引:0,他引:2  
The Raman spectroscopy of selected minerals of the corrosion products has been measured including nantokite, eriochalcite, claringbullite, atacamite, paratacamite, clinoatacamite and brochantite and related minerals. The free energy of formation shows that each mineral is stable relative to copper metal. The mineral, which is formed in copper corrosion, depends on the kinetics and conditions of the reaction. Raman spectroscopy clearly identifies each mineral by its characteristic Raman spectrum. The Raman spectrum is related to the mineral structure and bands are assigned to CuCl stretching and bending modes and to SO stretching modes. Clinoatacamite is identified as the polymorph of atacamite and not paratacamite. Paratacamite is a separate mineral with a similar but different structure to that of atacamite.  相似文献   

11.
Raman spectroscopy was tested for the identification of biomolecules (glycine, L-alanine, β-alanine, L-serine, and γ-aminobutyric acid) trapped in fluid inclusions inside halite model crystals. The investigated biomolecules represent important targets for future astrobiological missions. We know from terrestrial conditions that organic molecules and microorganisms can be sealed within fluid inclusions and can survive intact even for hundreds of millions of years. Raman spectroscopy is currently being miniaturized for future extraterrestrial planetary exploration (ExoMars 2018). Raman spectroscopy has shown the ability to detect investigated aminoacids nondestructively without any sample preparation, in short measurement times, and in relatively low concentrations. The number of registered Raman bands of investigated aminoacids and their intensity clearly correlate with the given concentration of biomolecules within fluid inclusions.  相似文献   

12.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. Humboldtine as the natural iron(II) oxalate mineral is a classic example. Thermogravimetry coupled to evolved gas mass spectrometry shows dehydration takes place in two steps at 130 and 141°C. Loss of the oxalate as carbon dioxide occurs at 312 and 332°C. Dehydration is readily followed by Raman microscopy in combination with a thermal stage and is observed by the loss of intensity of the OH stretching vibration at 3318 cm-1. The application of infrared emission spectroscopy supports the results of the TG-MS. Three Raman bands are observed at 1470, 1465 and 1432 cm-1 attributed the CO symmetric stretching mode. The observation of the three bands supports the concept of multiple iron(II) oxalate phases. The significance of this work rests with the ability of Raman spectroscopy to identify iron(II) oxalate which often occurs as a film on a host rock.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
The Kimi Unit of the Rhodope Metamorphic Province (RMP), NE Greece, experienced ultrahigh-pressure metamorphism (UHPM), as documented by the unequivocal presence of diamond microinclusions in metapelitic garnet porphyroblasts. Certain peculiar lozenge-shaped 2-8 microm sized inclusions in diamond-bearing garnets reveal a broad composite and asymmetric triplet band (phase XXX) at approximately 1331 cm(-1) in their Raman spectra acquired with a 632.8 nm He-Ne laser, initially attributed to an sp(3)-hybridized C-polymorph. These have been meticulously re-investigated by means of combined 2-wavelength (514.5 nm/632.8 nm laser) Raman microscopy. Raman mapping has been extensively employed in order to examine the spatial distribution of phase XXX and of other phases in these polyphase inclusions and to explore for additional Raman bands. The triplet band at approximately 1331 cm(-1) measured with the 632.8 nm laser shifts to much higher wavenumbers ( approximately 4966 cm(-1)) when excited with a 514.5 nm Ar(+) laser, proving that the XXX triplet is not a real Raman band but a luminescence one at approximately 691.1 nm. Numerous hypotheses on the nature of the mysterious phase XXX (e.g. Cr(3+)-bearing mineral, carbonate, C polymorph, gas, organic phase) are explored and discussed but all are shown to be unsatisfactory. It is suggested that XXX occurs as nanocrystals that luminesce strongly giving the appearance (in Raman maps) of being larger.  相似文献   

14.
高灰煤中矿物质及碳结构的振动光谱分析   总被引:1,自引:0,他引:1  
利用傅里叶变换红外光谱(FT-IR)、拉曼光谱和X射线衍射(XRD),分析了广西合山煤(GX)和平顶山煤(PD)及其酸洗煤的矿物质组分和碳结构。FT-IR谱图显示,GX和PD原煤的高岭石含量最为丰富,其次是石英和方解石,由二阶导数红外谱图发现,煤中还存在云母、蛇纹石、石膏和碱性长石。此外,从FT-IR谱图出现的三个层间水OH伸缩振动峰(3 695、3 651和3 619 cm-1)判断煤中高岭石的结晶度不高。酸洗煤的FT-IR和XRD分别显示出清晰的芳香C=C官能团峰(1 600 cm-1)和微晶碳(002)衍射峰;原煤的FT-IR和XRD都表明,矿物质完全掩盖了碳的信息。尽管如此,原煤及酸洗煤的拉曼谱图显示出清晰的缺陷碳峰(D峰)和石墨碳峰(G峰),而矿物质的信息完全被信号更强的碳峰掩盖。酸洗处理对煤的碳结构有较弱的影响,酸洗煤的碳结构有序度略低于原煤。  相似文献   

15.
This paper describes a study of a cerium–5 wt.% lanthanum (Ce–5 wt.% La) alloy using Raman spectroscopy and X-ray diffraction (XRD). Examination of the alloy microstructure by optical microscopy and Raman spectroscopy revealed the presence of inclusions which were identified as cerium oxide (CeO2). The study also highlighted the need to avoid excessive laser power during acquisition of the Raman spectra as this appeared to cause the oxidation of the region being analysed where previously no cerium oxide peak had been detected. The propensity of cerium to oxidise in air results in the formation of a CeO2 layer on the surface of the alloy. Raman spectroscopy of the oxide layer formed on the alloy after exposure to air for 21 days found that the Raman peak denoting cerium oxide was seen at between 5 and 7 cm−1 lower than the value for CeO2 (465 cm−1). This is attributed to a combination of a sub-stoichiometric oxide layer and the presence of La in the alloy.  相似文献   

16.
The structural and physical parameters of paper-like composites based on mineral fibers with aluminum polyhydroxo complexes as binders were determined and analyzed. Samples of the composites based on mineral fibers differing in the content of binders were analyzed by IR spectroscopy and electron microscopy. Formation of interfiber bonds in the materials studied was hypothesized.  相似文献   

17.
Octadecanol modified multiple-walled carbon nanotubes, with octadecanol covalently bound to the nanotube surface, have been synthesized by bromination of the carbon nanotubes followed by nucleophilic substitution using octadecanol and sodium hydride. Scanning electron microscopy and transmission electron microscopy images show that the morphologies of the nanotubes are largely intact after functionalization. The brominated carbon nanotubes and octadecanol modified carbon nanotubes were characterized using energy-dispersive X-ray spectroscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. The mechanism of nucleophilic substitution was discussed, and it is believed that the reaction occurs with an SN1 mechanism.  相似文献   

18.
Laser-induced breakdown spectroscopy (LIBS) was used to determine the mineral composition of various industrial scale samples. The aim of the study has been to investigate the capacity of LIBS to provide a fast, reliable analytical tool for carrying out routine analysis of inorganic scales, potentially on site, as a means to facilitate decision making concerning scale removal procedures. LIBS spectra collected in the range of 200–660 nm conveyed information about the metal content of the minerals. Via a straightforward analysis based on linear correlation of LIBS spectra it was possible to successfully discriminate scale samples into three main groups, Fe-rich, Ca-rich and Ba-rich, on the basis of correlation coefficients. By combining correlation coefficients with spectral data collected in the NIR, 860–960 nm, where sulfur emissions are detected, it became further possible to discriminate sulfates from carbonates as confirmed by independent analysis based on Raman spectroscopy. It is emphasized that the proposed LIBS-based method successfully identifies the major mineral or minerals present in the samples classifying the scales into relevant groups hence enabling process engineers to select appropriate scale dissolution strategies.  相似文献   

19.
The uranyl sulphate mineral zippeite was studied by Raman spectroscopy. The phase purity of the sample was initially checked by X-ray powder diffraction and its chemical composition was defined by electron microprobe (wavelength dispersive spectroscopy, WDS) analysis. The Raman spectroscopy research focused on the low wavenumber and uranyl stretching vibration regions. Vibration bands down to 50 cm–1 were tentatively assigned. The U–O bond lengths were calculated based on empirical relations. Inferred values are consistent with those obtained from the crystal structure analysis of synthetic zippeite. Number of bands was interpreted on the basis of factor group analysis.  相似文献   

20.
Effect of the composition of chitosan-modified natural silicates on tribotechnical characteristics of additives and formation of a surface layer in friction of surfaces was studied. The following composites were found to be the most promising: 90% serpentine + 10% chitosan-modified vermiculite; chitosan-modified serpentine; and 90% serpentine + 10% vermiculite. These composites provided the minimum friction coefficients due to introduction of polymeric chitosan into the interlayer space of an aluminosilicate. It was shown that introduction of 10% chitosan-modified layered silicate leads to formation of an organosilicate coating on the surface of chromiumplated steel. The composition and structure of the coating were determined by X-ray photoelectron spectroscopy and atomic-force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号