首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with 75As in tennantite and 121,123Sb isotopes in tetrahedrite are reported. The spectroscopy has been restricted to an ambient temperature studies in accord with typical industrial conditions. The second part of this contribution reports nuclear quadrupole-perturbed NMR findings on further, only partially characterised, metal arsenides. The findings enhance the detection capabilities of NQR based analysers for online measurement applications and may aid to control arsenic and antimony concentrations in metal processing stages.  相似文献   

2.
75As NQR and high-field NMR experiments have been performed on GexAsySe1−xy glasses. Evolution of As bonding structure from arsenic sites with axially symmetric distribution of the electric field gradient (EFG) to highly asymmetric As surroundings has been revealed. Arsenic atoms form pyramidal structural units in Ge2As2Se7 with no evidence of significant concentration of homopolar bonds. In Ge2As2Se5 most of arsenic atoms form structural units with two As-As bonds per atom and asymmetric EFG distribution. Arsenic bondings become more complicated in Ge0.33As0.12Se0.55 where all arsenic sites are highly distorted. The combination of NQR and NMR data provide valuable information on arsenic bonding dynamics in these glasses.  相似文献   

3.
《Physics letters. A》2020,384(30):126780
Rare-earth-ion-doped crystals (REICs) have played an important role in quantum information processing due to their excellent coherent properties. In order to obtain the information regarding the hyperfine structures of the rare-earth ions in REICs, optically detected nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) techniques based on RF resonance and various optical detection methods are widely employed in previous works. Here we demonstrate a new method of NQR spectroscopy based on the photon-echo detection. The hyperfine spectra of the ground state (7F0) and the optically-excited state (5D0) of 151Eu3+ in Y2SiO5 at zero field are obtained. This method can determine the hyperfine splittings within the ground state and the optically-excited state and is shown to be robust against electrical noise. Our results provide an alternative way for optical detection of NMR and NQR with high signal-to-noise ratio.  相似文献   

4.
Toward searching for illegal drugs, we investigated the pulsed nuclear quadrupole resonance (NQR) response of 14N in (1R,2S)-(-)-norephedrine, based on the predictions of quantum chemical calculations. Two pairs of spectral lines (ν+=3.089, 3.093 MHz and ν=2.594, 2.608 MHz) were observed despite its molecule structure having only a single nitrogen atom. This indicates that the molecular crystal has two nonequivalent nitrogen atoms in the unit cell. The temperature dependence of the NQR frequencies and relaxation properties were investigated for the purpose of accurate remote sensing of the drugs. The NQR frequency shift was approximately 0.23 kHz/K around room temperature. The spin-lattice relaxation and spin-phase memory times were 5.2–10.2 ms and 0.6–1.5 ms, respectively.  相似文献   

5.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P=4.7 and 10.8 kbar, the temperature dependence of nuclear-spin-lattice relaxation rate (1/T1) measured at tetragonal phase show no coherence peak just below Tc and decrease with decreasing temperature. The superconductivity is of gapless at P=4.7 kbar but evolves to multiple gaps at P=10.8 kbar. We find that the superconductivity appears near a quantum critical point. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.  相似文献   

6.
ABSTRACT

Quadrupole relaxation enhancement (QRE) has been suggested as the key mechanism for a novel class of field-selective, potentially responsive magnetic resonance imaging contrast agents. In previous publications, QRE has been confirmed for solid compounds containing 209Bi as the quadrupolar nucleus (QN). For QRE to be effective in aqueous dispersions, several conditions must be met, i.e. high transition probability of the QN at the 1H Larmor frequency, water exchange with the bulk and comparatively slow motion of the Bi-carrying particles. In this paper, the potential influence of structural order within the compounds (‘crystallinity’) on QRE was studied by nuclear quadrupole resonance (NQR) spectroscopy in one crystalline and two amorphous preparations of Triphenylbismuth (BiPh3). The amorphous preparations comprised (1) a shock-frozen melt and (2) a granulate of polystyrene which contained homogeneously distributed BiPh3 after common dissolution in THF and subsequent evaporation of the solvent. In contrast to the crystalline powder which exhibits strong, narrow NQR peaks the amorphous preparations did not reveal any NQR signals above the noise floor. From these findings, we conclude that the amorphous state leads to a significant spectral peak broadening and that for efficient QRE in potential contrast agents structures with a high degree of order (near crystalline) are required.  相似文献   

7.
The calculations developed in this paper aim at determining the optimal conditions of a NQR experiment when a transition is monitored by means of a pulse train with pulses of identical duration and signal acquisition after each pulse; coherences are assumed to vanish by effective transverse relaxation prior to every new pulse. These calculations demonstrate that, as in NMR, a steady state is effectively reached for any value of the recycle time. However, by contrast with NMR, it is shown that, for optimal data averaging under steady state conditions, the recycle time T can be kept as low as possible (the only limitation is the acquisition time). Nutation curves (signal amplitude versus pulse length) calculated in the steady state case are shown to depend strongly on the ratio T/T 1 (T 1: longitudinal relaxation time). The signal growth as a function of T/T 1under averaging of the first transients has been evaluated as well as the number of pulses necessary for reaching a steady state.  相似文献   

8.
Two hexanuclear niobium halide cluster compounds with a [Nb6X12]2+ (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of 95Mo nuclei in structurally related compounds containing [Mo6Br8]4+ cluster cores. Experimentally determined δiso(93Nb) values are in the range from 2400 to 3000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12]2+ unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by 79/81Br NQR and 35Cl solid-state NMR measurements.  相似文献   

9.
The off-resonance dependence of the amplitudes of the six dominant 14N nuclear quadrupole resonance (NQR) lines in commercial polymorphic trinitrotoluene (TNT) sample were experimentally determined for a wide range of experimental parameters when irradiated with the spin-lock spin-echo (SLSE) pulse sequence. We find that the amplitudes off-resonance dependence follows a sinc-like function with an additional modulation due to the spacing between the RF pulses. This dependence can be very well modeled with expressions we have derived for a single site 14N NQR in paranitrotoluene (PNT). The results can be immediately used for the reduction of the number of free parameters used in the robust signal processing models for the TNT NQR detectors.  相似文献   

10.
Nuclear quadrupole resonance (NQR) of209Bi has been studied in Bi4 (GeO4)3 and Bi4 (SiO4)3 using a wide band coherence-controlled superregenerative oscillator-detector. All the four allowed (ΔM I=±1) transitions are observed. In both cases the electric field gradient (EFG) tensor is axially symmetric (η=0.0). The quadrupole coupling constante 2 qQ is measured to be 490.8±1 MHz and 470.4±1 MHz respectively. It is pointed out that the purely ionic model is inadequate to understand these results. With the available experimental accuracy and the strength of the applied electric field (∼ 6 KV/cm), no field-induced effects on the NQR spectrum could be observed in the case of Bi4 (SiO4)3.  相似文献   

11.
Bonville  P.  Hodges  J. A.  Bertin  E.  Bouchaud  J.-Ph.  Dalmas de Réotier  P.  Regnault  L.-P.  Rønnow  H. M.  Sanchez  J.-P.  Sosin  S.  Yaouanc  A. 《Hyperfine Interactions》2004,159(1-4):103-108
An orientational disorder of the cation in [(PyO)D][AuCl4] crystal was investigated by the 35Cl NQR and 1H NMR measurements. A structural phase transition was found at ca. 70 K from the temperature dependence of the NQR frequencies both in [(PyO)D][AuCl4] and [(PyO)H][AuCl4]. Temperature dependence of the spin-lattice relaxation time T 1 of the NQR of [AuCl4] could be interpreted by an electric field gradient modulation due to the motion of the cation. Characteristics of T 1 of 35Cl NQR as well as that of 1H NMR suggest a dynamic orientational disorder of the cation.  相似文献   

12.
We report observations of 63Cu NQR in CuF2, KCuF3, and RbCuF3 in the paramagnetic state, NQR line widths of 63Cu in CuF2 and CuBr2 and of 81Br in CuBr2, SnBr2 and ZnBr2. The NQR resonances of certain Cu (II) paramagnetic compounds are exchange-narrowed to values commensurate with linewidths of the diamagnetic infinite-lattice compounds.  相似文献   

13.
The 121Sb NQR spectra of CdSb single crystal were measured in the presence of weak (up to 500 Oe) external magnetic fields. As the analysis of the 121Sb EFG symmetry showed, two magnetically nonequivalent Sb sites exist in the CdSb crystal lattice. An upper limit of the local magnetic field, which may exist in CdSb characterized with the observed 121Sb NQR spectra, was estimated by modeling the Zeeman perturbed patterns. This amounted to H loc ∼10 G, hence being much less than earlier found local fields H loc ∼30–200 G in bismuth-based compounds.  相似文献   

14.
Nitrogen atoms are present in a number of solid explosives and illicit substances. The nuclear quadrupole resonance (NQR) spectra and spin?Clattice relaxation of the nitrogen atomic nucleus 14N can be used to characterize these compounds and to distinguish between possible crystal polymorphs. After the characteristic 14N NQR frequencies and spin?Clattice relaxation rates in a compound are determined, NQR can be used to detect this compounds and, in case of crystal polymorphs, also to determine the method of preparation. The 14N NQR frequencies and spin?Clattice relaxation rates are measured either by pulse NQR or by nuclear quadrupole double resonance (NQDR) based on magnetic field cycling. Here, we discuss several 1H?C14N NQDR techniques which can be used to measure the 14N NQR frequencies and spin?Clattice relaxation rates under various experimental conditions. Some characteristic applications of these techniques are presented and discussed in details.  相似文献   

15.
16.
The first observations of NMR and NQR of both isotopes135Ba and134Ba in isotopically enriched samples of YBa2Cu3Oy with oxygen concentrations y=6.0, 6.2, and 7.0 are described. The pure NQR frequencies and asymmetry parameter are in good agreement with theoretical predictions. The temperature dependence of the NQR frequency of Ba for y=7 is qualitatively similar to that for Cu(2) but much stronger. The temperature dependence of the longitudinal and transverse relaxation times opens new questions.  相似文献   

17.
We report experimental results of nuclear magnetic resonance (NMR) at the La site and nuclear quadrupole resonance (NQR) at the As site in the normal state of the superconducting compound LaOs4As12. Measurements have been performed on powder sample obtained from high quality single crystals. The temperature dependences of the nuclear spin-lattice relaxation rates, 1/T1, of 75As and 139La nuclei were measured. No scaling between them was found indicating a local character of relaxation processes. The relaxation of 75As nuclei can consistently be understood in terms of antiferromagnetic spin fluctuations, as deduced from the T-dependence of (1/T1T)=C/(Tθ)1/2.  相似文献   

18.
The temperature dependences of nuclear quadrupole resonance (NQR) frequencies, the line width and nuclear relaxation of75As and63,65Cu, as well as the electrical resistivity in domeykite Cu3As are studied in the temperature range of 4.2-300 K. The comparison of the calculated with the measured lattice contribution to the NQR frequencies points at a substantial role played by the conduction electrons in creating the electric field gradient at the nuclei sites. The temperature dependence of the copper and arsenic nuclear spin-lattice relaxation linear at 4.2<T<200 K and that of the electric resistivity (30<T<200 K) prove the metallic character of the conductivity of domeykite. The enhancement of nuclear relaxation, the narrowing of copper and arsenic NQR line widths are considered as arising due to the ionic movement starting beyond 200 K. This movement influences the electric resistivity, most likely due to the inreasing density of states at the Fermi surface.  相似文献   

19.
EPR, 13C NMR and TEM study of ultradisperse diamond (UDD) samples is reported. The compounds show a high concentration of paramagnetic centers (up to 1020 spin/g), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. The anomalous reduction in the spin-lattice relaxation time of 13C (from several hours in natural diamond to ∼150 ms in UDD clusters) is attributed to the interaction between the unpaired electrons of the paramagnetic centers and nuclear spins. 13C NMR line-width reflects the fact that the structure of the UDD surface is distorted in comparison to the ‘bulk’ diamond structure.  相似文献   

20.
Nuclear spin–lattice relaxation rate T 1 −1 has been measured for the ladder sites of two single crystals Sr14Cu24O41 (Sr14-A,B) by 63Cu NMR/NQR. The hole localization around 100 K appears as a peak in the T variation of T 1 −1(NQR). On the other hand, it is suppressed in the T 1 −1 (NMR) data under the magnetic field H ∼ 11 T, and a new peak appears around 20 K. T 1 −1(NMR) around the peak is more enlarged for Sr14-B than for Sr14-A. Hence, holes on the ladders of Sr14-B tend to be more localized. This is considered to be an origin for the occurrence of the magnetic order in Sr14-B under H ∼ 11 T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号