首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider discrete competitive facility location problems in this paper. Such problems could be viewed as a search of nodes in a network, composed of candidate and customer demand nodes, which connections correspond to attractiveness between customers and facilities located at the candidate nodes. The number of customers is usually very large. For some models of customer behavior exact solution approaches could be used. However, for other models and/or when the size of problem is too high to solve exactly, heuristic algorithms may be used. The solution of discrete competitive facility location problems using genetic algorithms is considered in this paper. The new strategies for dynamic adjustment of some parameters of genetic algorithm, such as probabilities for the crossover and mutation operations are proposed and applied to improve the canonical genetic algorithm. The algorithm is also specially adopted to solve discrete competitive facility location problems by proposing a strategy for selection of the most promising values of the variables in the mutation procedure. The developed genetic algorithm is demonstrated by solving instances of competitive facility location problems for an entering firm.  相似文献   

2.
We present a multistart heuristic for the uncapacitated facility location problem, based on a very successful method we originally developed for the p-median problem. We show extensive empirical evidence to the effectiveness of our algorithm in practice. For most benchmarks instances in the literature, we obtain solutions that are either optimal or a fraction of a percentage point away from it. Even for pathological instances (created with the sole purpose of being hard to tackle), our algorithm can get very close to optimality if given enough time. It consistently outperforms other heuristics in the literature.  相似文献   

3.
多商品设施选址问题是众多设施选址问题中一类重要而困难的问题.在这一问题中,顾客的需求可能包含不止一种商品.对于大规模问题,成熟的商业求解器往往不能在满意的时间内找到高质量的可行解.研究了无容量限制的单货源多商品设施选址问题的一般形式,并给出了应用于此类问题的两个启发式方法.这两个方法基于原选址问题的线性规划松弛问题的最优解,分别通过求解紧问题和邻域搜索的方式给出了原问题的一个可行上界.理论分析指出所提方法可以实施于任意可行问题的实例.数值结果表明所提方法可以显著地提高求解器求解此类设施选址问题的求解效率.  相似文献   

4.
In this paper we propose a general variable neighborhood search heuristic for solving the uncapacitated single allocation p-hub center problem (USApHCP). For the local search step we develop a nested variable neighborhood descent strategy. The proposed approach is tested on benchmark instances from the literature and found to outperform the state-of-the-art heuristic based on ant colony optimization. We also test our heuristic on large scale instances that were not previously considered as test instances for the USApHCP. Moreover, exact solutions were reached by our GVNS for all instances where optimal solutions are known.  相似文献   

5.
Facility location problems are often encountered in many areas such as distribution, transportation and telecommunication. We describe a new solution approach for the capacitated facility location problem in which each customer is served by a single facility. An important class of heuristic solution methods for these problems are Lagrangian heuristics which have been shown to produce high quality solutions and at the same time be quite robust. A primal heuristic, based on a repeated matching algorithm which essentially solves a series of matching problems until certain convergence criteria are satisfied, is incorporated into the Lagrangian heuristic. Finally, a branch-and-bound method, based on the Lagrangian heuristic is developed, and compared computationally to the commercial code CPLEX. The computational results indicate that the proposed method is very efficient.  相似文献   

6.
We study in this paper multi-product facility location problem in a two-stage supply chain in which plants have production limitation, potential depots have limited storage capacity and customer demands must be satisfied by plants via depots. In the paper, handling cost for batch process in depots is considered in a realistic way by a set of capacitated handling modules. Each module can be regards as alliance of equipment and manpower. The problem is to locate depots, choose appropriate handling modules and to determine the product flows from the plants, opened depots to customers with the objective to minimize total location, handling and transportation costs. For the problem, we developed a hybrid method. The initial lower and upper bounds are provided by applying a Lagrangean based on local search heuristic. Then a weighted Dantzig–Wolfe decomposition and path-relinking combined method are proposed to improve obtained bounds. Numerical experiments on 350 randomly generated instances demonstrate our method can provide high quality solution with gaps below 2%.  相似文献   

7.
We propose a Lagrangian heuristic for facility location problems with concave cost functions and apply it to solve the plant location and technology acquisition problem. The problem is decomposed into a mixed integer subproblem and a set of trivial single-variable concave minimization subproblems. We are able to give a closed-form expression for the optimal Lagrangian multipliers such that the Lagrangian bound is obtained in a single iteration. Since the solution of the first subproblem is feasible to the original problem, a feasible solution and an upper bound are readily available. The Lagrangian heuristic can be embedded in a branch-and-bound scheme to close the optimality gap. Computational results show that the approach is capable of reaching high quality solutions efficiently. The proposed approach can be tailored to solve many concave-cost facility location problems.  相似文献   

8.
This paper presents exact and heuristic solution procedures for a multiproduct capacitated facility location (MPCFL) problem in which the demand for a number of different product families must be supplied from a set of facility sites, and each site offers a choice of facility types exhibiting different capacities. MPCFL generalizes both the uncapacitated (or simple) facility location (UFL) problem and the pure-integer capacitated facility location problem. We define a branch-and-bound algorithm for MPCFL that utilizes bounds formed by a Lagrangian relaxation of MPCFL which decomposes the problem into UFL subproblems and easily solvable 0-1 knapsack subproblems. The UFL subproblems are solved by the dual-based procedure of Erlenkotter. We also present a subgradient optimization-Lagrangian relaxation-based heuristic for MPCFL. Computational experience with the algorithm and heuristic are reported. The MPCFL heuristic is seen to be extremely effective, generating solutions to the test problems that are on average within 2% of optimality, and the branch-and-bound algorithm is successful in solving all of the test problems to optimality.  相似文献   

9.
The single row facility layout problem (SRFLP) is the problem of arranging facilities with given lengths on a line, while minimizing the weighted sum of the distances between all pairs of facilities. The problem is NP-hard. In this paper, we present two tabu search implementations, one involving an exhaustive search of the 2-opt neighborhood and the other involving an exhaustive search of the insertion neighborhood. We also present techniques to significantly speed up the search of the two neighborhoods. Our computational experiments show that the speed up techniques are effective, and our tabu search implementations are competitive. Our tabu search implementations improved previously known best solutions for 23 out of the 43 large sized SRFLP benchmark instances.  相似文献   

10.
We develop a two-stage stochastic programming model for a humanitarian relief logistics problem where decisions are made for pre- and post-disaster rescue centers, the amount of relief items to be stocked at the pre-disaster rescue centers, the amount of relief item flows at each echelon, and the amount of relief item shortage. The objective is to minimize the total cost of facility location, inventory holding, transportation and shortage. The deterministic equivalent of the model is formulated as a mixed-integer linear programming model and solved by a heuristic method based on Lagrangean relaxation. Results on randomly generated test instances show that the proposed solution method exhibits good performance up to 25 scenarios. We also validate our model by calculating the value of the stochastic solution and the expected value of perfect information.  相似文献   

11.
The set covering problem (SCP) calls for a minimum cost family of subsets from n given subsets, which together covers the entire ground set. In this paper, we propose a local search algorithm for SCP, which has the following three characteristics. (1) The use of 3-flip neighborhood, which is the set of solutions obtainable from the current solution by exchanging at most three subsets. As the size of 3-flip neighborhood is O(n3), the neighborhood search becomes expensive if implemented naively. To overcome this, we propose an efficient implementation that reduces the number of candidates in the neighborhood without sacrificing the solution quality. (2) We allow the search to visit the infeasible region, and incorporate the strategic oscillation technique realized by adaptive control of penalty weights. (3) The size reduction of the problem by using the information from the Lagrangian relaxation is incorporated, which is indispensable for solving very large instances. According to computational comparisons on benchmark instances with other existing heuristic algorithms for SCP, our algorithm performs quite effectively for various types of problems, especially for very large-scale instances.  相似文献   

12.
A travelling deliveryman needs to find a tour such that the total waiting time of all the customers he has to visit is minimum. The deliveryman starts his tour at a depot, travelling at constant velocity. In this paper we suggest a general variable neighborhood search based heuristic to solve this NP-hard combinatorial optimization problem. We combine several classical neighborhood structures and design data structure to store and update the incumbent solution efficiently. In this way, we are able to explore neighborhoods as efficiently as when solving the travelling salesman problem. Computational results obtained on usual test instances show that our approach outperforms recent heuristics from the literature.  相似文献   

13.
This paper introduces a new hybrid algorithmic nature inspired approach based on particle swarm optimization, for solving successfully one of the most popular logistics management problems, the location routing problem (LRP). The proposed algorithm for the solution of the location routing problem, the hybrid particle swarm optimization (HybPSO-LRP), combines a particle swarm optimization (PSO) algorithm, the multiple phase neighborhood search – greedy randomized adaptive search procedure (MPNS-GRASP) algorithm, the expanding neighborhood search (ENS) strategy and a path relinking (PR) strategy. The algorithm is tested on a set of benchmark instances. The results of the algorithm are very satisfactory for these instances and for six of them a new best solution has been found.   相似文献   

14.
In this paper we partially resolve an open problem in spherical facility location. The spherical facility location problem is a generalization of the planar Euclidean facility location problem. This problem was first studied by Katz and Cooper and by Drezner and Wesolowsky where a Weszfeld-like algorithm was proposed. This algorithm is very simple and does not require a line search. However, its convergence has been an open problem for more than ten years. In this paper, we prove that the sequence generated by the algorithm converges to the unique optimal solution under the condition that the oscillation of the sequence converges to zero. We conjecture that the algorithm is a descent algorithm and prove that the sequence generated by the algorithm converges to the optimal solution under this conjecture.  相似文献   

15.
Heuristics for Multi-Stage Interdiction of Stochastic Networks   总被引:1,自引:0,他引:1  
We describe and compare heuristic solution methods for a multi-stage stochastic network interdiction problem. The problem is to maximize the probability of sufficient disruption of the flow of information or goods in a network whose characteristics are not certain. In this formulation, interdiction subject to a budget constraint is followed by operation of the network, which is then followed by a second interdiction subject to a second budget constraint. Computational results demonstrate and compare the effectiveness of heuristic algorithms. This problem is interesting in that computing an objective function value requires tremendous effort. We exhibit classes of instances in our computational experiments where local search based on a transformation neighborhood is dominated by a constructive neighborhood.  相似文献   

16.
In the optimization problem for pseudo-Boolean functions we consider a local search algorithm with a generalized neighborhood. This neighborhood is constructed for a locally optimal solution and includes nearby locally optimal solutions. We present some results of simulations for pseudo-Boolean functions whose optimization is equivalent to the problems of facility location, set covering, and competitive facility location. The goal of these experiments is to obtain a comparative estimate for the locally optimal solutions found by the standard local search algorithm and the local search algorithm using a generalized neighborhood.  相似文献   

17.
Because most commercial passenger airlines operate on a hub-and-spoke network, small disturbances can cause major disruptions in their planned schedules and have a significant impact on their operational costs and performance. When a disturbance occurs, the airline often applies a recovery policy in order to quickly resume normal operations. We present in this paper a large neighborhood search heuristic to solve an integrated aircraft and passenger recovery problem. The problem consists of creating new aircraft routes and passenger itineraries to produce a feasible schedule during the recovery period. The method is based on an existing heuristic, developed in the context of the 2009 ROADEF Challenge, which alternates between three phases: construction, repair and improvement. We introduce a number of refinements in each phase so as to perform a more thorough search of the solution space. The resulting heuristic performs very well on the instances introduced for the challenge, obtaining the best known solution for 17 out of 22 instances within five minutes of computing time and 21 out of 22 instances within 10 minutes of computing time.  相似文献   

18.
A tabu search heuristic procedure is developed, implemented and computationally tested for the capacitated facility location problem. The procedure uses different memory structures. Visited solutions are stored in a primogenitary linked quad tree. For each facility, the recent move at which the facility changed its status and the frequency it has been open are also stored. These memory structures are used to guide the main search process as well as the diversification and intensification processes. Lower bounds on the decreases of total cost are used to measure the attractiveness of the moves and to select moves in the search process. A specialized network algorithm is developed to exploit the problem structure in solving transportation problems. Criterion altering, solution reconciling and path relinking are used to perform intensification functions. The performance of the procedure is tested through computational experiments using test problems from the literature and new test problems randomly generated. It found optimal solutions for almost all test problems from the literature. As compared to the heuristic method of Lagrangean relaxation with improved subgradient scheme, the tabu search heuristic procedure found much better solutions using much less CPU time.  相似文献   

19.
We consider the discrete version of the competitive facility location problem in which new facilities have to be located by a new market entrant firm to compete against already existing facilities that may belong to one or more competitors. The demand is assumed to be aggregated at certain points in the plane and the new facilities can be located at predetermined candidate sites. We employ Huff's gravity-based rule in modelling the behaviour of the customers where the probability that customers at a demand point patronize a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. The objective of the firm is to determine the locations of the new facilities and their attractiveness levels so as to maximize the profit, which is calculated as the revenue from the customers less the fixed cost of opening the facilities and variable cost of setting their attractiveness levels. We formulate a mixed-integer nonlinear programming model for this problem and propose three methods for its solution: a Lagrangean heuristic, a branch-and-bound method with Lagrangean relaxation, and another branch-and-bound method with nonlinear programming relaxation. Computational results obtained on a set of randomly generated instances show that the last method outperforms the others in terms of accuracy and efficiency and can provide an optimal solution in a reasonable amount of time.  相似文献   

20.
We consider a discrete facility location problem where the difference between the maximum and minimum number of customers allocated to every plant has to be balanced. Two different Integer Programming formulations are built, and several families of valid inequalities for these formulations are developed. Preprocessing techniques which allow to reduce the size of the largest formulation, based on the upper bound obtained by means of an ad hoc heuristic solution, are also incorporated. Since the number of available valid inequalities for this formulation is exponential, a branch-and-cut algorithm is designed where the most violated inequalities are separated at every node of the branching tree. Both formulations, with and without the improvements, are tested in a computational framework in order to discriminate the most promising solution methods. Difficult instances with up to 50 potential plants and 100 customers, and largest easy instances, can be solved in one CPU hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号