首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tabu search heuristic procedure is developed, implemented and computationally tested for the capacitated facility location problem. The procedure uses different memory structures. Visited solutions are stored in a primogenitary linked quad tree. For each facility, the recent move at which the facility changed its status and the frequency it has been open are also stored. These memory structures are used to guide the main search process as well as the diversification and intensification processes. Lower bounds on the decreases of total cost are used to measure the attractiveness of the moves and to select moves in the search process. A specialized network algorithm is developed to exploit the problem structure in solving transportation problems. Criterion altering, solution reconciling and path relinking are used to perform intensification functions. The performance of the procedure is tested through computational experiments using test problems from the literature and new test problems randomly generated. It found optimal solutions for almost all test problems from the literature. As compared to the heuristic method of Lagrangean relaxation with improved subgradient scheme, the tabu search heuristic procedure found much better solutions using much less CPU time.  相似文献   

2.
In this paper, we present a cut-and-solve (CS) based exact algorithm for the Single Source Capacitated Facility Location Problem (SSCFLP). At each level of CS’s branching tree, it has only two nodes, corresponding to the Sparse Problem (SP) and the Dense Problem (DP), respectively. The SP, whose solution space is relatively small with the values of some variables fixed to zero, is solved to optimality by using a commercial MIP solver and its solution if it exists provides an upper bound to the SSCFLP. Meanwhile, the resolution of the LP of DP provides a lower bound for the SSCFLP. A cutting plane method which combines the lifted cover inequalities and Fenchel cutting planes to separate the 0–1 knapsack polytopes is applied to strengthen the lower bound of SSCFLP and that of DP. These lower bounds are further tightened with a partial integrality strategy. Numerical tests on benchmark instances demonstrate the effectiveness of the proposed cutting plane algorithm and the partial integrality strategy in reducing integrality gap and the effectiveness of the CS approach in searching an optimal solution in a reasonable time. Computational results on large sized instances are also presented.  相似文献   

3.
The Capacitated Facility Location Problem (CFLP) consists of locating a set of facilities with capacity constraints to satisfy the demands of a set of clients at the minimum cost. In this paper we propose a simple and effective heuristic for large-scale instances of CFLP. The heuristic is based on a Lagrangean relaxation which is used to select a subset of “promising” variables forming the core problem and on a Branch-and-Cut algorithm that solves the core problem. Computational results on very large scale instances (up to 4 million variables) are reported.  相似文献   

4.
In this paper, a linear programming based heuristic is considered for a two-stage capacitated facility location problem with single source constraints. The problem is to find the optimal locations of depots from a set of possible depot sites in order to serve customers with a given demand, the optimal assignments of customers to depots and the optimal product flow from plants to depots. Good lower and upper bounds can be obtained for this problem in short computation times by adopting a linear programming approach. To this end, the LP formulation is iteratively refined using valid inequalities and facets which have been described in the literature for various relaxations of the problem. After each reoptimisation step, that is the recalculation of the LP solution after the addition of valid inequalities, feasible solutions are obtained from the current LP solution by applying simple heuristics. The results of extensive computational experiments are given.  相似文献   

5.
Cost effectiveness is central to the air freight forwarders. In this work, we study how an air freight forwarder should plan its cargo loading in order to minimize the total freight cost given a limited number of rented containers. To solve the problem efficiently for practical implementation, we propose a new large-scale neighborhood search heuristic. The proposed large-scale neighborhood relaxes the subset-disjoint restriction made in the existing literature; the relaxation risks a possibility of infeasible exchanges while at the same time it avoids the potentially large amount of checking effort required to enforce the subset-disjoint restriction. An efficient procedure is then used to search for improvement in the neighborhood. We have also proposed a subproblem to address the difficulties caused by the fixed charges. The compromised large-scale neighborhood (CLSN) search heuristic has shown stably superior performance when compared with the traditional large-scale neighborhood search and the mixed integer programming model.  相似文献   

6.
The Capacitated Facility Location Problem (CFLP) is among the most studied problems in the OR literature. Each customer demand has to be supplied by one or more facilities. Each facility cannot supply more than a given amount of product. The goal is to minimize the total cost to open the facilities and to serve all the customers. The problem is $\mathcal{NP}$ -hard. The Kernel Search is a heuristic framework based on the idea of identifying subsets of variables and in solving a sequence of MILP problems, each problem restricted to one of the identified subsets of variables. In this paper we enhance the Kernel Search and apply it to the solution of the CFLP. The heuristic is tested on a very large set of benchmark instances and the computational results confirm the effectiveness of the Kernel Search framework. The optimal solution has been found for all the instances whose optimal solution is known. Most of the best known solutions have been improved for those instances whose optimal solution is still unknown.  相似文献   

7.
Hongtao Lei  Gilbert Laporte  Bo Guo 《TOP》2012,20(1):99-118
This paper describes a generalized variable neighborhood search heuristic for the Capacitated Vehicle Routing Problem with Stochastic Service Times, in which the service times at vertices are stochastic. The heuristic is tested on randomly generated instances and compared with two other heuristics and with an alternative solution strategy. Computational results show the superiority and effectiveness of the proposed heuristic.  相似文献   

8.
This paper considers the Single Source Capacitated Facility Location Problem (SSCFLP). We propose a Scatter Search approach to provide upper bounds for the optimal solution of the problem. The proposed approach uses GRASP to initialize the Reference Set. Solutions of the Reference Set are combined using a procedure that consists of two phases: (1) the initialization phase and (2) the improvement phase. During the initialization phase each client is assigned to an open facility to obtain a solution that is then improved with the improvement phase. Also, a tabu search algorithm is applied. In order to evaluate the proposed approach we use different sets of test problems. According to the results obtained we observe that the method provides good quality solutions with reasonable computational effort.  相似文献   

9.
In this paper, we study a capacitated facility location problem with two decision makers. One (say, the leader) decides on which subset of facilities to open and the capacity to be installed in each facility with the goal of minimizing the overall costs; the second decision maker (say, the follower), once the facilities have been designed, aims at maximizing the profit deriving from satisfying the demands of a given set of clients beyond a certain threshold imposed by the leader. The leader can foresee but cannot control the follower’s behavior. The resulting mathematical formulation is a discrete–continuous bilevel optimization problem. We propose a decomposition approach to cope with the bilevel structure of the problem and the integrality of a subset of variables under the control of the leader. Such a proposal has been tested on a set of benchmark instances available in the literature.  相似文献   

10.
We consider a mathematical model similar in a sense to competitive location problems. There are two competing parties that sequentially open their facilities aiming to “capture” customers and maximize profit. In our model, we assume that facilities’ capacities are bounded. The model is formulated as a bilevel integer mathematical program, and we study the problem of obtaining its optimal (cooperative) solution. It is shown that the problem can be reformulated as that of maximization of a pseudo-Boolean function with the number of arguments equal to the number of places available for facility opening. We propose an algorithm for calculating an upper bound for values that the function takes on subsets which are specified by partial (0, 1)-vectors.  相似文献   

11.
In a yard where export containers are piled up, only those on the top are directly accessible to the stacking equipment. As a result, extra rehandles may occur when lifting them up for loading onto ships. One way to improve operational efficiency is to pre-marshal the containers in such an order that it fits the loading sequence. This paper proposes a model to develop a movement plan to improve the layout of containers in a bay. The proposed heuristic consists of a neighborhood search process, an integer programming model, and three minor subroutines. Each of the components plays a different role in the heuristic. Several sets of testing results demonstrate the performance of the heuristic as well as the contributions of the components.  相似文献   

12.
The capacitated facility location problem (CFLP) is a well-known combinatorial optimization problem with applications in distribution and production planning. It consists in selecting plant sites from a finite set of potential sites and in allocating customer demands in such a way as to minimize operating and transportation costs. A number of solution approaches based on Lagrangean relaxation and subgradient optimization has been proposed for this problem. Subgradient optimization does not provide a primal (fractional) optimal solution to the corresponding master problem. However, in order to compute optimal solutions to large or difficult problem instances by means of a branch-and-bound procedure information about such a primal fractional solution can be advantageous. In this paper, a (stabilized) column generation method is, therefore, employed in order to solve a corresponding master problem exactly. The column generation procedure is then employed within a branch-and-price algorithm for computing optimal solutions to the CFLP. Computational results are reported for a set of larger and difficult problem instances.  相似文献   

13.
Lagrangean techniques have been widely applied to the uncapacitated plant location problem, and in some cases they have proven to be successfull even when capacitated problems with additional constraints are taken into account. In our paper we study the application of these techniques to the capacitated plant location problem when the model considered is a pure integer one. Several lagrangean decompositions are considered and for some of them heuristic algorithms have been designed to solve the resulting lagrangean subproblems, the heuristics consisting of a two phase procedure. The first (location phase) defines a set of multipliers from the analysis of the dual LP relaxation, and makes a choice of the plants considering the resulting subproblems as a particular case of the general assignment problems. Several heuristics have been studied for this second phase, based either on a decomposition of knapsack type subproblems through a definition of a set of penalties, or of looking into the duality gap and trying to reduce it. Computational experience is reported.  相似文献   

14.
In the capacitated facility location problem with hard capacities, we are given a set of facilities, ${\mathcal{F}}$ , and a set of clients ${\mathcal{D}}$ in a common metric space. Each facility i has a facility opening cost f i and capacity u i that specifies the maximum number of clients that may be assigned to this facility. We want to open some facilities from the set ${\mathcal{F}}$ and assign each client to an open facility so that at most u i clients are assigned to any open facility i. The cost of assigning client j to facility i is given by the distance c ij , and our goal is to minimize the sum of the facility opening costs and the client assignment costs. The only known approximation algorithms that deliver solutions within a constant factor of optimal for this NP-hard problem are based on local search techniques. It is an open problem to devise an approximation algorithm for this problem based on a linear programming lower bound (or indeed, to prove a constant integrality gap for any LP relaxation). We make progress on this question by giving a 5-approximation algorithm for the special case in which all of the facility costs are equal, by rounding the optimal solution to the standard LP relaxation. One notable aspect of our algorithm is that it relies on partitioning the input into a collection of single-demand capacitated facility location problems, approximately solving them, and then combining these solutions in a natural way.  相似文献   

15.
A variable neighborhood search heuristic for periodic routing problems   总被引:1,自引:0,他引:1  
The aim of this paper is to propose a new heuristic for the Periodic Vehicle Routing Problem (PVRP) without time windows. The PVRP extends the classical Vehicle Routing Problem (VRP) to a planning horizon of several days. Each customer requires a certain number of visits within this time horizon while there is some flexibility on the exact days of the visits. Hence, one has to choose the visit days for each customer and to solve a VRP for each day. Our method is based on Variable Neighborhood Search (VNS). Computational results are presented, that show that our approach is competitive and even outperforms existing solution procedures proposed in the literature. Also considered is the special case of a single vehicle, i.e. the Periodic Traveling Salesman Problem (PTSP). It is shown that slight changes of the proposed VNS procedure is also competitive for the PTSP.  相似文献   

16.
The current paper addresses the integrated location and inventory problem with capacity constraints. Adopting more realistic assumptions comes at the cost of increased complexity and inability to solve the model with existing methods, mainly due to the non-linear terms that arise. We attempt to render the extended formulation solvable by linearizing its non-linear terms. Certain terms are replaced by exact reformulations while for the rest a piecewise linearization is implemented. The contribution of this work is not only the development of a formulation that is more practical, but also the reformulation that enables its solving with commercial software. We test our proposed approach on a benchmark dataset from the literature, including both small and large instances of the problem. Results clearly demonstrate the superiority of this approach in terms of both solution quality and computational time.  相似文献   

17.
The Capacitated Facility Location Problem (CFLP) is to locate a set of facilities with capacity constraints, to satisfy at the minimum cost the order-demands of a set of clients. A multi-source version of the problem is considered in which each client can be served by more than one facility. In this paper we present a reformulation of the CFLP based on Mixed Dicut Inequalities, a family of minimum knapsack inequalities of a mixed type, containing both binary and continuous (flow) variables. By aggregating flow variables, any Mixed Dicut Inequality turns into a binary minimum knapsack inequality with a single continuous variable. We will refer to the convex hull of the feasible solutions of this minimum knapsack problem as the Mixed Dicut polytope. We observe that the Mixed Dicut polytope is a rich source of valid inequalities for the CFLP: basic families of valid CFLP inequalities, like Variable Upper Bounds, Cover, Flow Cover and Effective Capacity Inequalities, are valid for the Mixed Dicut polytope. Furthermore we observe that new families of valid inequalities for the CFLP can be derived by the lifting procedures studied for the minimum knapsack problem with a single continuous variable. To deal with large-scale instances, we have developed a Branch-and-Cut-and-Price algorithm, where the separation algorithm consists of the complete enumeration of the facets of the Mixed Dicut polytope for a set of candidate Mixed Dicut Inequalities. We observe that our procedure returns inequalities that dominate most of the known classes of inequalities presented in the literature. We report on computational experience with instances up to 1000 facilities and 1000 clients to validate the approach.  相似文献   

18.
The capacitated arc routing problem (CARP) focuses on servicing edges of an undirected network graph. A wide spectrum of applications like mail delivery, waste collection or street maintenance outlines the relevance of this problem. A realistic variant of the CARP arises from the need of intermediate facilities (IFs) to load up or unload the service vehicle and from tour length restrictions. The proposed Variable Neighborhood Search (VNS) is a simple and robust solution technique which tackles the basic problem as well as its extensions. The VNS shows excellent results on four different benchmark sets. Particularly, for all 120 instances the best known solution could be found and in 71 cases a new best solution was achieved.  相似文献   

19.
In a surprising result, Korupolu, Plaxton, and Rajaraman [13] showed that a simple local search heuristic for the capacitated facility location problem (CFLP) in which the service costs obey the triangle inequality produces a solution in polynomial time which is within a factor of 8+ of the value of an optimal solution. By simplifying their analysis, we are able to show that the same heuristic produces a solution which is within a factor of 6(1+) of the value of an optimal solution. Our simplified analysis uses the supermodularity of the cost function of the problem and the integrality of the transshipment polyhedron.Additionally, we consider the variant of the CFLP in which one may open multiple copies of any facility. Using ideas from the analysis of the local search heuristic, we show how to turn any -approximation algorithm for this variant into a polynomial-time algorithm which, at an additional cost of twice the optimum of the standard CFLP, opens at most one additional copy of any facility. This allows us to transform a recent 2-approximation algorithm of Mahdian, Ye, and Zhang [17] that opens many additional copies of facilities into a polynomial-time algorithm which only opens one additional copy and has cost no more than four times the value of the standard CFLP.This research was performed while the author was a postdoctoral fellow at the IBM T.J. Watson Research Center.This research was performed while the author was a Research Staff Member at the IBM T.J. Watson Research Center.A preliminary version of this paper appeared in the Proceedings of the 7th Conference on Integer Programming and Combinatorial Optimization [9].  相似文献   

20.
This paper presents a hybrid of a general heuristic framework and a general purpose mixed-integer programming (MIP) solver. The framework is based on local search and an adaptive procedure which chooses between a set of large neighborhoods to be searched. A mixed integer programming solver and its built-in feasibility heuristics is used to search a neighborhood for improving solutions. The general reoptimization approach used for repairing solutions is specifically suited for combinatorial problems where it may be hard to otherwise design suitable repair neighborhoods. The hybrid heuristic framework is applied to the multi-item capacitated lot sizing problem with setup times, where experiments have been conducted on a series of instances from the literature and a newly generated extension of these. On average the presented heuristic outperforms the best heuristics from the literature, and the upper bounds found by the commercial MIP solver ILOG CPLEX using state-of-the-art MIP formulations. Furthermore, we improve the best known solutions on 60 out of 100 and improve the lower bound on all 100 instances from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号