首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ZnO nanoparticles, nanowires, and nanowalls were synthesized rapidly on Si via thermal decomposition of zinc acetate by a modified chemical vapor deposition at a low substrate temperature of 200–250°C for the first time. The diameters of the synthesized nanoparticles and nanowires are around 100 and 30 nm, respectively, and the thickness of nanowalls is around 20 nm. High-resolution transmission electron microscopy shows that the nanowires as well as nanowalls are single-crystalline, and the nanoparticles are highly-textured poly-crystalline structures. Room-temperature photoluminescence spectra of the nanostructures show strong ultraviolet emissions centered at 368–383 nm and weak violet emissions at around 425 nm, indicating good crystal quality. The study provides a simple and efficient route to synthesize ZnO diverse nanostructures at low temperature.  相似文献   

2.
Mg-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Mg:Zn atomic ratio from 0 to 7%. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and magnesium acetate tetrahydrate were heated under refluxing at 65 °C using methanol as a solvent. X-ray diffraction analysis reveals that the Mg-doped ZnO crystallizes in a wurtzite structure with crystal size of 5–12 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 800–1100 nm. High resolution transmission electron microscopy images show that each sphere is made up of numerous nanoparticles of average diameter 5–11 nm. The XRD patterns, SEM and TEM micrographs of doping of Mg in ZnO confirmed the formation of hollow spheres indicating that the Mg2+ is successfully substituted into the ZnO host structure of the Zn2+ site. Furthermore, the UV–Vis spectra and photoluminescence (PL) spectra of the ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.36–3.55 eV by the use of the dopants.  相似文献   

3.
Fabrication of ZnO nanoparticles by laser ablation in liquid medium is reported. The possibility of using a sintered ZnO target for the ablation as well as a Zn plate is demonstrated. The appropriate aqueous solution of sodium dodecyl sulfate is found to be 1 mM for ZnO growing. The shape of ZnO nanoparticles is sphere and its diameter is 30∼60 nm. Fourier transform infrared spectra, Raman scattering spectra, and photoluminescence spectra reveal the optical properties of ZnO nanoparticles. Nanoparticles obtained by using ZnO targets show a smaller defect density compared with those by using Zn targets.  相似文献   

4.
《Current Applied Physics》2010,10(2):676-681
Thioglycerol capped nanoparticles of ZnO have been prepared in methanol through chemical technique. Nanostructures of the prepared ZnO particles have been confirmed through X-ray diffraction measurement. The Debye–Scherrer formula is used to obtain the particle size. The average size of the prepared ZnO nanoparticles is found to be 50 nm. The frequency-dependent dielectric dispersion of the sample is investigated in the temperature range from 293 to 383 K and in a frequency range from 100 Hz to 1 MHz by impedance spectroscopy. An analysis of the complex permittivity (ε′ and ε′′) and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The frequency-dependent maxima of the imaginary part of impedance are found to obey Arrhenius law with activation energy ∼1 eV. The scaling behavior of dielectric loss spectra suggests that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are analyzed in the framework of conductivity and modulus formalisms. The frequency-dependent conductivity spectra obey the power law.  相似文献   

5.
The colloidal stabilities of dispersions of unmodified and surface-functionalized SiO2 nanoparticles in hydrophobic and hydrophilic imidazolium-based ionic liquids were studied with advanced rheology at three temperatures (25, 100, and 200 °C). The rheological behavior of the dispersions was strongly affected by the ionic liquids hydrophilicity, by the nanoparticles surface, by the concentration of the nanoparticles in the dispersion as well as by the temperature. The unmodified hydrophilic nanoparticles showed a better compatibility with the hydrophilic ionic liquid. The SiO2 surface functionalization with hydrophobic groups clearly improved the colloidal stability of the dispersions in the hydrophobic ionic liquid. The temperature increase was found to lead to a destabilization in all studied systems, especially at higher concentrations. The results of this study imply that ionic liquids with tailored properties could be used in absorbers directly after reactors for gas-phase synthesis of nanoparticles or/and as solvents for their further surface functionalization without agglomeration or aggregation.  相似文献   

6.
Size distributions of nanoparticles in the vicinity of synthesis reactors will provide guidelines for safe operation and protection of workers. Nanoparticle concentrations and size distributions were measured in a research academic laboratory environment with two different types of gas-phase synthesis reactors under a variety of operating conditions. The variation of total particle number concentration and size distribution at different distances from the reactor, off-design state of the fume hood, powder handling during recovery, and maintenance of reactors are established. Significant increases in number concentration were observed at all the locations during off-design conditions (i.e., failure of the exhaust system). Clearance of nanoparticles from the work environment was longer under off-design conditions (20 min) compared to that under normal hood operating conditions (4–6 min). While lower particle number concentrations are observed during operation of furnace aerosol reactors in comparison to flame aerosol reactors, the handling, processing, and maintenance operations result in elevated concentrations in the work area.  相似文献   

7.
The gas-phase growth and optical characteristics of 1-dimensional ZnO nanostructure have been investigated. The ZnO nanowires (NWs) were grown vertically on Au coated silicon substrates by vapor-liquid-solid (VLS) growth mechanism using chemical vapor deposition (CVD). The ZnO NWs were grown in the crystal direction of [0 0 0 1]. The ZnO NWs exhibit the uniform size of less than 100 nm in diameter and up to 5 μm in length. Photoluminescence (PL) spectrum of ZnO NWs shows the strong band-edge emission at ∼380 nm (∼3.27 eV) without significant deep-level defect emission. The exciton lifetime of ZnO NWs was measured to be approximately 150 ± 10 ps.  相似文献   

8.
We report the synthesis of nanostructure ZnO semiconductor with ~2.1 nm diameter using a chemical precipitation method. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were investigated by UV–vis and fluorescence techniques. The absorption spectra exhibit a sharp absorption edge at ~334 nm corresponding to band gap of ~3.7 eV. The fluorescence spectra displayed a near-band-edge ultraviolet excitonic emission at ~410 nm and a green emission peak at ~525 nm, due to a transition of a photo-generated electron from the conduction band to a deeply trapped hole. The photocatalytic activity of the prepared ZnO nanoparticles has been investigated for the degradation of ciprofloxacin drug under UV light irradiation in aqueous solutions of different pH values. The results showed that the photocatalytic degradation process is effective at pH 7 and 10, but it is rather slow at pH 4. Higher degradation efficiency (~50%) of the drug was observed at pH 10 after 60 min. Photodegradation of the drug follows a pseudo-first-order kinetics.  相似文献   

9.
The photoluminescence properties of individual ZnO nanorods, grown by atmospheric pressure metalorganic chemical vapor deposition (APMOCV) and chemical bath deposition (CBD) are investigated by means of temperature dependent micro-PL. It was found that the low temperature PL spectra are driven by neutral donor bound exciton emission D0X, peaked at 3.359 and 3.363 eV for APMOCVD and CBD ZnO nanorods, respectively. The temperature increase causes a red energy shift of the peaks and enhancement of the free excitonic emission (FX). The FX was found to dominate after 150 K for both samples. It was observed that while APMOCVD ZnO nanorods possess a constant low signal of visible deep level emission with temperature, the ZnO nanorods grown by CBD revealed the thermal activation of deep level emission (DLE) after 130 K. The resulting room temperature DLE was a wide band located at 420–550 nm. The PL properties of individual ZnO nanorods can be of importance for their forthcoming application in future optoelectronics and photonics.  相似文献   

10.
We report a study on the SHI induced modifications on structural and optical properties of ZnO/PMMA nanocomposite films. The ZnO nanoparticles were synthesized by the chemical route using 2-mercaptoethanol as a capping agent. The structure of ZnO nanoparticles was confirmed by XRD, SEM and TEM. These ZnO nanoparticles were dispersed in the PMMA matrix to form ZnO/PMMA nanocomposite films by the solution cast method. These ZnO/PMMA nanocomposite films were then irradiated by swift heavy ion irradiation (Ni8+ ion beam, 100 MeV) at a fluence of 1×1011 ions/cm2. The nanocomposite films were then characterized by XRD, UV-vis absorption spectroscopy and photoluminescence spectroscopy. As revealed from the absorption spectra, absorption edge is not changed by the irradiation but the optical absorption is increased. Enhanced green luminescence at about 527 nm and a less intense blue emission peak around 460 nm were observed after irradiation with respect to the pristine ZnO/PMMA nanocomposite film.  相似文献   

11.
A series of ZnO films were prepared on the Si (1 0 0) or glass substrate at 773 K under various oxygen pressures by using a laser molecular beam epitaxy system. The microstructure and optical properties were investigated through the X-ray diffraction, Raman spectrometer, scanning electron microscope, ultraviolet–visible spectrophotometer and spectrofluorophotometer. The results showed that ZnO thin film prepared at 1 Pa oxygen pressure displayed the best crystalinity and all ZnO films formed a columnar structure. Meanwhile, all ZnO films exhibited an abrupt absorption edge near the wavelength of 380 nm in transmission spectra. With increasing the oxygen pressure, the transmission intensity changed non-monotonically and reached a maximum of above 80% at 1 Pa oxygen pressure, based on which the band gaps of all ZnO films were calculated to be about 3.259–3.315 eV. Photoluminescence spectra indicated that there occurred no emission peak at a low oxygen pressure of 10−5 Pa. With the increment of the oxygen pressure, there occurred a UV emission peak of 378 nm, a weak violet emission peak of 405 nm and a wide green emission band centered at 520 nm. As the oxygen pressure increased further, the position of UV emission peak remained and its intensity changed non-monotonically and reached a maximum at 1 Pa. Meanwhile the intensity of green emission band increased monotonically with increasing the oxygen pressure. In addition, it was also found that the intensity of UV emission peak decreased as the measuring temperature shifted from 80 to 300 K. The analyses indicated that the UV emission peak originated from the combination of free excitons and the green emission band originated from the energy level jump from conduction band to OZn defect.  相似文献   

12.
Single crystal ZnO nanowires diffused with europium (Eu) from a solid source at 900 °C for 1 h or doped with Eu during growth have been characterized. The ZnO nanowires were grown by chemical vapor deposition on Si substrates employing Au as a catalyst. The diameter of the resulting nanowires was 200 nm with a length of 1 μm. Photoluminescence spectra excited by a He–Cd laser at room temperature showed the green luminescence at 515 nm in Eu-diffused nanowires. A small red shift of near-band-edge emission of ZnO nanowires was observed in the diffused wires, but sharp emission from Eu3 ions was not present. Transmission electron microscopy shows crystalline Eu2O3 formation on the diffused nanowire surface, which forms a coaxial heterostructure system. When Eu was incorporated during the nanowire growth, the sharp 5DO7F2 transition of the Eu3+ ion at around 615 nm was observed.  相似文献   

13.
Thin films of zinc (Zn) were deposited onto glass substrates (maintained at room temperature) by thermal evaporation under vacuum. The metallic zinc films were submitted to thermal oxidation in air at 670 K and 770 K, respectively, for 5–90 min, in order to obtain zinc oxide (ZnO) thin films. X-ray diffraction patterns revealed that the ZnO thin films were polycrystalline and had a wurtzite (hexagonal) structure. The morphology of the prepared ZnO thin films was investigated using atomic force microscopy and scanning electron microscopy techniques. Transmission spectra were recorded in the spectral domain from 300 nm to 1400 nm. The optical energy bandgap calculated from the absorption spectra (supposing allowed direct transitions) was in the range 3.05–3.30 eV.  相似文献   

14.
ZnO and Zn0.9Cu0.1O nanoparticles were synthesized by the sonochemical method. Structural and morphological properties of the synthesized nanoparticles were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX). The results revealed the formation of ZnO and Zn0.9Cu0.1O nanoparticles in wurtzite phase with average crystallite diameter of 30–40 nm calculated from Debye–Scherrer equation. Moreover, the ethanol vapor sensing properties of ZnO and Zn0.9Cu0.1O nanoparticles were investigated at different operating temperatures and they were compared with commercial ZnO microparticles. Comparative results demonstrated that Zn0.9Cu0.1O nanoparticles exhibit highest and fastest response to 250 ppm of ethanol at 300 °C. Results on response/recovery time, sensing mechanism, conductance variation and thermodynamics/kinetics of ethanol sensing is also studied and discussed.  相似文献   

15.
In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.  相似文献   

16.
A simple growth route towards ZnO thin films and nanorods   总被引:1,自引:0,他引:1  
Highly orientated ZnO thin films and the self-organized ZnO nanorods can be easily prepared by a simple chemical vapor deposition method using zinc acetate as a source material at the growth temperature of 180 and 320 °C, respectively. The ZnO thin films deposited on Si (100) substrate have good crystallite quality with the thickness of 490 nm after annealing in oxygen at 800 °C. The ZnO nanorods grown along the [0001] direction have average diameter of 40 nm with length up to 700 nm. The growth mechanism for ZnO nanorods can be explained by a vapor-solid (VS) mechanism. Photoluminescence (PL) properties of ZnO thin films and self-organized nanorods were investigated. The luminescence mechanism for green band emission was attributed to oxygen vacancies and the surface states related to oxygen vacancy played a significant role in PL spectra of ZnO nanorods.  相似文献   

17.
Large scale metallic Zn microspheres and hollow ZnO microspheres are synthesized by thermal evaporation and vapor transport by heating a ZnO/graphite mixture at 1000 °C. Firstly, metallic Zn microspheres are fabricated with diameters in the range of 1–10 μm. The Zn microspheres are then annealed at 600 °C in air, which form hollow semiconducting ZnO microspheres. EDX and XRD spectra reveal that the oxidized material is indeed ZnO. Room temperature photoluminescence spectra of the oxidized material show a sharp peak at 380 nm and a wider broad peak centered at 490 nm. This growth mechanism is discussed and further investigated for other metallic and metal oxide microstructures.  相似文献   

18.
In the present paper, ZnO nanoparticles (NPs) with particle size of 20–50 nm have been synthesized by hydrothermal method. UV-visible absorption spectra of ZnO nanoparticles show absorption edge at 372 nm, which is blue-shifted as compared to bulk ZnO. Photoluminescence (PL) and photoconductive device characteristics, including field response, light intensity response, rise and decay time response, and spectral response have been studied systematically. The photoluminescence spectra of these ZnO nanoparticles exhibited different emission peaks at 396 nm, 416 nm, 445 nm, 481 nm, and 524 nm. The photoconductivity spectra of ZnO nanoparticles are studied in the UV-visible spectral region (366–691 nm). In spectral response curve of ZnO NPs, the wavelength dependence of the photocurrent is very close to the absorption and photoluminescence spectra. The photo generated current, Ipc = (Itotal - Idark) and dark current Idc varies according to the power law with the applied field IpcαVr and with the intensity of illumination IpcαIL r, due to the defect related mechanism including both recombination centers and traps. The ZnO NPs is found to have deep trap of 0.96 eV, very close to green band emission. The photo and dark conductivities of ZnO NPs have been measured using thick film of powder without any binder.  相似文献   

19.
The hetero-/homogeneous combustion of fuel-lean ethane/air mixtures over platinum was investigated experimentally and numerically at pressures of 1–14 bar, equivalence ratios of 0.1–0.5, and surface temperatures ranging from 700 to 1300 K. Experiments were carried out in an optically accessible channel-flow reactor and included in situ 1-D Raman measurements of major gas phase species concentrations across the channel boundary layer for determining the catalytic reactivity, and planar laser induced fluorescence (LIF) of the OH radical for assessing homogeneous ignition. Numerical simulations were performed with a 2-D CFD code with detailed hetero-/homogeneous C2 kinetic mechanisms and transport. An appropriately amended heterogeneous reaction scheme has been proposed, which captured the increase of ethane catalytic reactivity with rising pressure. This scheme, when coupled to a gas-phase reaction mechanism, reproduced the combustion processes over the reactor extent whereby both heterogeneous and homogeneous reactions were significant and moreover, provided good agreement to the measured homogeneous ignition locations. The validated hetero-/homogeneous kinetic schemes were suitable for modeling the catalytic combustion of ethane at elevated pressures and temperatures relevant to either microreactors or large-scale gas turbine reactors in power generation systems. It was further shown that the pressure dependence of the ethane catalytic reactivity was substantially stronger compared to that of methane, at temperatures up to 1000 K. Implications for high-pressure catalytic combustion of natural gas were finally drawn.  相似文献   

20.
ZnO nanowires with different arsenic concentration were grown on Si (1 0 0) substrates by chemical vapor deposition method without using catalyst. Zn/GaAs mixed powders were used as Zn and As source, respectively. Oxygen was used as oxidant. The images of scanning electron microscope show that the arsenic-doped ZnO nanowires with preferred c-axial orientation were obtained, which is in well accordance with the X-ray diffraction analysis. The arsenic related acceptor emission was observed in the photoluminescence spectra at 11 K for all arsenic-doped ZnO samples. This method for the preparation of arsenic-doped ZnO nanowires may open the way to realize the ZnO nanowires based light-emitting diode and laser diode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号