首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CW laser emission on the quasi 3-level (4F3/24I9/2) transition in Nd:GGG is reported for different pump focusing and resonator dimensions. A nearly hemispherical plano-concave resonator led at 937.3 nm to a maximum output power of 4.1 W for an incident pump power of 21.7 W, thus corresponding to a slope efficiency of about 23.5%. Laser operation was also obtained for the first time around 933.6 nm by using a glass etalon for frequency selection with a maximum output power of 2.3 W and a slope efficiency of 16% with respect to the incident pump power. Dual-wavelength operation (around 933.6 and 937.3 nm), which offers a potential source to generate THz radiation, is also reported.  相似文献   

2.
We demonstrate a tunable, narrow linewidth, linearly polarized and gain-switched Cr2+:ZnSe laser pumped by a Tm, Ho:YVO4 laser at 10 kHz pulse repetition frequency. By setting a quartz birefringent filter with a Brewster angle in the cavity, the linearly polarized Cr2+:ZnSe laser can be continuously tuned from 2.45 to 2.50 μm, and the output power was almost not changed. In addition, the linewidth was compressed to about 5 nm. At the incident pump power to the crystal of 14 W, the maximum output power of 2.84 W was obtained, corresponding to a slope efficiency of 20.4%.  相似文献   

3.
A high-power, continuous-wave 3.5% Tm3+ doped LiYF4 (Tm:YLF) laser has been developed. Using two Tm:YLF rods in a single cavity, 55 W of laser output at 1910 nm was obtained with a slope efficiency of 49%. The M2 factor was found to be <3. With a single Tm:YLF rod, a maximum laser power of 30 W was obtained with a slope efficiency of 50%. The laser was tuned to the peak absorption wavelength of Ho:YAG of 1907.5 nm by an intracavity quartz etalon with an output power loss < 1 W. PACS 42.55.-f; 42.55.Xi; 42.60.Pk  相似文献   

4.
A stable output, high power diode-pumped Tm: YLF laser operating at 1908 nm with FWHM line width less than 0.1 nm is reported. Using a volume Bragg grating, 41.1 W of output with M 2∼2 under an incident pump power of 111.7 W was achieved, corresponding to an optical-to-optical conversion efficiency of 36.8% and a slope efficiency of 43.2%. A laser wavelength shift of only 0.3 nm with the incident pump power varying from 13.1 W to 111.7 W was observed.  相似文献   

5.
We describe efficient operation of a Ho:LuAG laser in-band pumped by a cladding-pumped narrow linewidth Tm fiber laser at ∼1907 nm. With 1.0 at % Ho3+-doped LuAG and an output coupler of 6% transmission, the laser had a threshold pump power of ∼0.85 W and generated 18.04 W of continuous-wave output power at 2124.5 nm for 35 W of incident pump power, corresponding to an average slope efficiency with respect to incident pump power of 53.4%.  相似文献   

6.
The efficient oscillation of LiF:F2 color center laser pumped by a compact LD-pumped Nd:YVO4 acousto optically Q-switched laser with 30 kHz pulse repetition rate was demonstrated. The broadband oscillation with 75 μJ pulse energy and 37 kW peak power with the slope efficiency 20% was obtained. The average output power as high as 230 mW was reached. The narrow line tunable from 1.10 to 1.29 μm laser radiation with 10% conversion efficiency in the maximum of the tuning curve was achieved under pumping with 1.6 W average pump power.  相似文献   

7.
Singly 0.5 at.% Ho doped crystals of YLiF4 (YLF) and LuLiF4 (LLF) are studied under identical pump conditions in continuous-wave (CW) and Q-switched operation. Longitudinal end-pumped CW laser performance shows Ho:LLF to have a slightly lower threshold and a slightly higher slope efficiency with respect to absorbed pump power than Ho:YLF. Both lasers were operated on π-polarization. At a cavity output coupling of 20% and a crystal length of 30 mm, the Ho:LLF (Ho:YLF) laser yielded 18.8 W (18 W) of CW output at a wavelength of 2067.8 nm (2064.0 nm) for 41.4 W (42.2 W) of absorbed pump power with a slope efficiency of 67.1% (65.6%) and an optical-to-optical efficiency of 45.4% (42.6%) with respect to absorbed pump power. With the same output coupling and a crystal length of 40 mm, the Ho:LLF (Ho:YLF) laser yielded 20.5 W (18.1 W) of CW output at a wavelength of 2067.7 nm (2064.3 nm) for 51.5 W (50.0 W) of absorbed pump power with a slope efficiency of 58.4% (55.4%) and an optical-to-optical efficiency of 39.8 (36.1%) with respect to absorbed pump power. The influence of the temperature of the cooling mount on CW laser performance was studied and showed very similar results for both laser materials. At full pump power, a slope of −155 mW/°C (−149 mW/°C) was observed for the Ho:LLF (Ho:YLF) laser with a crystal length of 30 mm. In Q-switched operation, the Ho:LLF (Ho:YLF) laser produced 37 mJ (38.5 mJ) at a repetition rate of 100 Hz with a pulse duration of 38 ns (35 ns) at a wavelength of 2053.1 nm (2050.2 nm) with a slope efficiency of 30.3% (31%) and an optical-to-optical efficiency of 14.2% (13.9%) with respect to absorbed pump power. The beam quality was nearly diffraction limited (M 2<1.1).  相似文献   

8.
We compare Tm3+-doped silica and fluoride fiber lasers in continuous wave operation using the same experimental setup. For incident pump powers of up to 50 W, the fluoride fiber is shown to have higher output power and efficiency compared to silica and reaches a maximum output power of 20 W at 1.94 μm. A slope efficiency of 49% (41%) and a maximum optical-to-optical efficiency of 45% (35%) at an incident pump power of 25 W (37 W) were determined for the fluoride (silica) fibers, respectively. These optical-to-optical efficiencies are the highest reported for directly diode-pumped Tm3+-based fiber lasers. We establish that in free-running mode, fiber lasers using fluoride glass are temporally more stable than fiber lasers using a silica host. PACS 42.55.Wd; 42.55.Xi; 42.60.Mi; 42.70.Hj  相似文献   

9.
We demonstrate a tunable, narrow linewidth, linearly polarized and gain-switched Cr2+:ZnSe laser pumped by a Tm, Ho:YVO4 laser at 10 kHz pulse repetition frequency. By setting a quartz birefringent filter with a Brewster angle in the cavity, the linearly polarized Cr2+:ZnSe laser can be continuously tuned from 2.45 to 2.50 μm, and the output power was almost not changed. In addition, the linewidth was compressed to about 5 nm. At the incident pump power to the crystal of 14 W, the maximum output power of 2.84 W was obtained, corresponding to a slope efficiency of 20.4%.  相似文献   

10.
A 2% Tm3+-doped LiYF4(Tm:YLF) slab is double-end-pumped by two laser diode stacks. The pumped volume has a rectangular cross section. The Tm:YLF laser produced 148 W of continuos-wave output at 1912 nm in a beam with M x 2≈199 and M y 2≈1.7 for 554 W of incident pump power. The slope efficiency with respect to the incident pump power was 32.6%, and the optical-to-optical efficiency was 26.7%.  相似文献   

11.
We reported the Ho:YAP laser pumped by the Tm:YAP laser. The Ho:YAP laser maximum output power was 4.91 W when the incident power was 10.1 W with the threshold of 2.63 W. The slope efficiency was 63.7%, corresponding to an optical-to-optical efficiency of 48.6%. The Ho:YAP output wavelength was centered at 2118.2 nm with bandwidth of about 1 nm. We estimate the beam quality to be M2 = 1.29.  相似文献   

12.
Room temperature operation of a c-cut microchip Tm,Ho:Lu2SiO5 laser end-pumping by a fibercoupled laser-diode is reported. A 4.03 W incident pump power is used to generate a maximum laser output of 98 mW, representing 2.43% optical-to-optical conversion efficiency and a 4.38% slope efficiency corresponding to incident power. In the experiment, the oscillating wavelengths shifting from 2.084 to 2.089 μm has been observed and approximately 10 mW single 2.087 μm wavelength oscillation has been obtained by changing the pump power to 1.43 W and the position of the pump focus.  相似文献   

13.
We report on a high power polycrystalline Er:YAG ceramic laser in-band pumped by a cladding-pumped Er, Yb fiber laser wavelength locked at 1532 nm with a volume Bragg grating. Using 1.0 at % Er3+-doped ceramic as the gain medium and an output coupler of 10% transmission, the laser had a threshold pump power of ∼1.5 W and generated 11 W of continuous-wave output at 1645 nm for 23.3 W of incident pump power at 1532 nm, corresponding to a slope efficiency with respect to incident pump power of 51%.  相似文献   

14.
We report the properties of a compact diode-pumped continuous-wave Nd:GdV04 laser with a linear cavity and different Nd-doped laser crystals. In a 0.2at.% Nd-doped Nd:GdVO4 laser, 1.54 W output laser power is achieved at 912nm wavelength with a slope efficiency of 24.8% at an absorbed pump power of 9.4W. With 0.3at.% Nd-doping concentration, we can obtain the either single-wavelength emission at 1064nm or 912nm or the dual-wavelength emission at 1064nm and 912nm by controlling the incident pump power. From an incident pump power of 11.6 W, the 1064nm emission between ^4Fa/2 and ^4I11/2 is suppressed completely by the 912nm emission between ^4Fa/2 and ^4I9/2. We obtain 670 mW output of the 912nm single-wavelength laser emission with a slope efficiency of 5.5% by taking an incident pump power of 18.4 W. Using a Nd:GdV04 laser with 0.4at.% Nd-doping concentration, we obtain either the single-wavelength emission at 1064nm or the dual-wavelength emission at both 1064nm and 912nm by increasing the incident pump power. We observe a strong competition process in the dualavelength laser.  相似文献   

15.
We demonstrated a laser-diode pumped Nd-doped yttrium gallium garnet (Nd:YGG) crystal continuous wave (CW) laser at 1.33 μm for the first time to our knowledge. At an incident pump power of 18.5 W, as high as 3.09 W of CW output power at 1.33 μm is achieved. The slope efficiency with respect to the incident pump power was 21.3%, and the fluctuation of the output power was better than 2.8% in the given 4 h. The beam quality factor M2 is 1.14 and 1.16 for tangential direction and sagittal direction, respectively.  相似文献   

16.
In this paper, the output performances at 1331 nm in continuous-wave (CW) operation and the passive Q-switching regime of a Nd:Gd3Ga5O12(Nd:GGG) laser crystal have been investigated under pumping with diode lasers. A maximum CW output power of 1.5 W was reached at an incident pump power of 7.5 W; the overall optical-to-optical efficiency and the slope efficiency with respect to the pump power were 21.5% and 19.4%, respectively. The passive Q-switching regime was achieved with Co2+:LaMgAl11O19 (Co2+:LMA) saturable absorber (SA) crystals. A maximum average output power of 183 mW was recorded with a Co2+:LMA SA with initial transmission T i of 90%. The pulse energy was 18.7 μJ and the pulse duration was 26.1 ns, which correspond to a pulse peak power of 0.7 kW. With a Co2+:LMA SA with T i=81%, the average power decreased to 131 mW. However, the pulse energy increased to 21.4 μJ, the pulse duration was 16.4 ns and the pulse peak power increased to 1.3 kW.  相似文献   

17.
Continuous-wave (CW) and Q-switched operation of a room-temperature Ho:LuAG laser was resonantly double-end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho: LuAG laser generated 24.5 W of linearly output at 2094.4 nm with beam quality factor of M 2 = 1.11 ± 0.02 for an absorbed pump power of 44.0 W, corresponding to optical-to-optical conversion efficiency of 55.7% and slope efficiency of 60.5%. Under Q-switched operation, a maximum output power of 24.1 W with a slope efficiency of 58.1% at 12 kHz was obtained. Also, the minimum pulse width of 32 ns was achieved, corresponding to the peak power was 37.7 kW.  相似文献   

18.
A c-cut Tm:YAP laser which operated at 1.94 or 1.99 μm is reported in detail. The maximum output power was 20.4 and 19.8 W at the wavelength around 1.99 and 1.94 μm, corresponding to the slope efficiency of 34.3 and 31.5%, respectively. For 1.94 μm operation, with an F-P etalon inserted in the cavity, the output central wavelength was stable around 1.94 μm with about 0.15 nm linewidth. The beam quality factor M 2 was measured to be ∼1.8 for 1.99 μm and ∼1.9 for 1.94 μm.  相似文献   

19.
Zhao  C. C.  He  M. Z.  Hang  Y.  Yin  J. G.  Zhang  L. H.  He  X. M.  Gong  J.  Yu  T.  Chen  W. B. 《Laser Physics》2012,22(5):918-921
Polarized absorption and fluorescence spectra Nd3+-doped LiLuF4 single crystal were investigated. The peak emission cross section at 905 and 910 nm are 0.97 × 10−20 and 0.82 × 10−20 cm2, respectively. Two samples with different dimensions were tested in the laser experiments. With a laser-diode as the pump source, a maximum 1.17 W laser output at 910 nm has been obtained with a slope efficiency of 16.3% with respect to the pump power.  相似文献   

20.
Jimin Yang  Jie Liu  Jingliang He 《Optik》2004,115(11-12):538-540
We report a high-power continuous-wave(cw) diode-pumped efficient 1.34 μm Nd:YVO4 laser. The laser properties of a low Nd3+-doped concentration of the Nd:YVO4 crystal operating at 1.34 μm formed with a simple plane-concave cavity have been demonstrated. With the incident pump power of 22 W, an output power of 8.24 W was obtained, giving an optical conversion efficiency of 37.5% and slope efficiency of 40%. The thermal effects of cw end-pumped solid-state lasers were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号