首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the simultaneous extraction of estrone (E1), 17β-estradiol (E2), estriol (E3), ethinylestradiol (EE2), and their glucuronated and sulfated metabolites in milk was optimized using solid-phase extraction (SPE). The aim of this research was to analyze estrogens and their conjugated metabolites by liquid chromatography with tandem mass spectrometry (LC–MS/MS) in a single run, without the need to perform enzymatic cleavage and derivatization. Two SPE cartridges in tandem were used, consisting of sorbents based on the hydrophilic–lipophilic balance and amine-functionalized packing materials. To monitor analyte loss at every step of the SPE procedure 14C-labeled E2 was spiked into the milk sample and the radioactivity was monitored at all stages of the SPE. In addition, non-radiolabeled standards of estrogens and metabolites were used to optimize solvent systems for the SPE and LC–MS/MS. The optimized method described in this paper can achieve recoveries ranging from 72% to 117% for the free estrogens (E1, E2, E3, and EE2), and 62% to 112% for seven conjugated metabolites. The three doubly conjugated, highly polar metabolites included in this study gave lower recoveries (≤43%) due to poor retention in SPE. Finally, commercial milk samples were analyzed for the presence of estrogens and their conjugated metabolites. Estrone (concentration range: 23–67 ng/L) was found to be the major free estrogen present in all milk samples. Estradiol was consistently observed in milk, but the concentrations were below the limit of detection (LOD of 10 ng/L), and no estriol and ethinylestradiol were detected. Several conjugated estrogen metabolites were identified, 17β-estradiol-3-glucuronide (71–289 ng/L), estrone-3-sulfate (60–240 ng/L), 17β-estradiol-3,17β-sulfate (<LOD to 30 ng/L), and estrone-3-glucuronide (<LOQ of 25 ng/L). This method proved efficient in the simultaneous analysis of estrogens and their metabolites in milk.  相似文献   

2.
In this work, a new stir cake sorptive extraction (SCSE) using polymeric ionic liquid monolith as sorbent was prepared. The sorbent was obtained by in situ copolymerization of an ionic liquid, 1-allyl-3-methylimidazolium bis[(trifluoro methyl)sulfonyl]imide (AMII) and divinylbenzene (DB) in the presence of N,N-dimethylformamide. The influence of the content of ionic liquid and the porogen in the polymerization mixture on extraction performance was studied thoroughly. The physicochemical properties of the polymeric ionic liquid were characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The usefulness of SCSE–AMIIDB was demonstrated by the enrichment of trace benzimidazole anthelmintics. Several parameters affecting the extraction efficiency were investigated, and under the optimized conditions, a simple and effective method for the determination of trace benzimidazoles residues in water, milk and honey samples was established by coupling SCSE–AMIIDB with high performance liquid chromatography/diode array detection (SCSE–AMIIDB–HPLC/DAD). Results indicated that the limits of detection (S/N = 3) for target compounds were 0.020–0.072 μg L−1, 0.035–0.10 μg L−1 and 0.026–0.076 μg L−1 in water, milk and honey samples, respectively. In addition, an acceptable reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSD) of less than 9% and 11%, respectively. Finally, the established AMII–SCSE–HPLC/DAD method was successfully applied for the determination of benzimidazoles residues in milk, honey and environmental water samples. Recoveries obtained for the determination of benzimidazole anthelmintics in spiking samples ranged from 70.2% to 117.6%, with RSD below 12% in all cases.  相似文献   

3.
A simple, rapid, and sensitive method for the quantitative monitoring of five sulfonamide antibacterial residues (SAs) in milk was developed by stir bar sorptive extraction (SBSE) coupling to high performance liquid chromatography with diode array detection. The analytes were concentrated by SBSE based on poly (vinylimidazole–divinylbenzene) monolithic material as coating. The extraction procedure was very simple, milk was diluted with water then directly sorptive extraction without elimination of fats and protein in samples was required. To achieve optimum extraction performance for SAs, several parameters, including extraction and desorption time, desorption solvent, ionic strength and pH value of sample matrix were investigated. Under the optimized experimental conditions, low detection limits (S/N = 3) quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 1.30–7.90 ng/mL and 4.29–26.3 ng/mL from spiked milk, respectively. Good linearities were obtained for SAs with the correlation coefficients (R2) above 0.996. Finally, the proposed method was successfully applied to the determination of SAs compounds in different milk samples and satisfied recoveries of spiked target compounds in real samples were obtained.  相似文献   

4.
Using triacontyl bonded silica (C30) as on-line solid-phase extraction (SPE) material and a specially designed on-line analytical system which allowed large sample volume injection, a high speed and robust on-line SPE-HPLC–MS method was established for the analysis of five estrogens and bisphenol A (BPA) in milk samples. The milk sample is pretreated with acetonitrile for protein precipitation and then treated with primary secondary amine for the removal of polar impurities in the matrix. Then the pretreated sample can be automatically loaded by a LC pump. For effective extraction, an offshoot with NH4Ac solution of high-flow rate was employed to dilute the loaded sample by a mixing tee before sample was loaded onto the C30 extraction column. In this way, large volume injection (1 mL in this experiment) could be achieved. Some important parameters such as sample loading flow rate, sample dilution ratio and injection volume were optimized. Under the optimized conditions, the recoveries for all analytes range from 71.4 to 97.1% and reproducibility represented as RSDs are less than 15.0% (n = 5) with milk samples spiked at 0.6 and 15 ng/mL of each analyte. To the authors’ knowledge, it constitutes the first work describing a C30 on-line SPE-LC–MS analytical method for the screen and monitoring of these estrogens and BPA in milk.  相似文献   

5.
A rapid, accurate and sensitive method for simultaneous determination of 15 steroidal hormones including four estrogens (estrone, 17β-estradiol, 17α-ethynylestradiol, estriol) and eleven progestogens (17β-estradiol-3-benzoate, 19-norethindrone, gestodene, levonorgestrel, medroxyprogesterone, cyproterone acetate, megestrol-17-acetate, progesterone, norethindrone acetate, chlormadinone-17-acetate, and hydroxy progesterone caproate) in environmental waters was developed by coupling solid-phase disk extraction (SPDE) to ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) with electrospray ionization. Among three types of extraction tested (C8 SPDE, C18 SPDE and C18 SPE), the most satisfactory result was achieved using C18 SPDE for its satisfactory recovery (75.6 to 101.4%) and short extraction time (15 min for 1 L deionised water). The validity of this method was investigated and good analytical performance for all the analytes was obtained, including low limits of method detection (0.5–3.4 ng/L) and excellent linear dynamic range (1.0–50.0 ng/L). The method was applied to determine the steroidal hormones in 10 environmental waters including tap water, river water, lake water and waste water in Beijing. No progestogen was detected in all samples and estrone, estriol, 17α-ethynylestradiol were found in most samples at levels between 1.8 and 127.9 ng/L.  相似文献   

6.
Water-compatible pefloxacin-imprinted monoliths synthesized in a water-containing system were used for the selective extraction of fluoroquinolones (FQs). The MIP monolith was synthesized by using methacrylic acid as the functional monomer, di(ethylene glycol) dimethacrylate as a cross-linker and methanol–water (10:3, v/v) as the porogenic solvent. The ability of the derivated MIP for selective recognition of FQs (ciprofloxacin, difloxacin, danofloxacin and enrofloxacin) and quinolones (flumequine, and oxolinic acid) was evaluated. The derivated monolith showed high selectivity and was able to distinguish between FQs and quinolones. A simple rapid and sensitive method using polymer monolith microextraction (PMME) based on the MIP monolith combined with HPLC with fluorescence detection was developed for the determination of four FQs from milk samples. Owing to the unique porous structure and flow-through channels in the network skeleton of the MIP monolith, phosphate buffer diluted milk samples were directly supplied to PMME; allowing non-specific bound proteins and other biological matrix to be washed out, and FQs to be selectively enriched. The limit of detection of the method was 0.4–1.6 ng/mL and recovery was 92.4–98.2% with relative standard deviations less than 5.9%.  相似文献   

7.
A simple coprecipitation method was developed for the determination of tetracyclines (TCs) in surface water and milk by high-performance liquid chromatography with diode-array detection (HPLC–DAD). Magnesium ion was added into the surface water or the acetonitrile (MeCN) extract of milk. After alkalinization, magnesium hydroxide precipitates which had been formed can be separated from the matrix solution easily by centrifuging and then a dissolution step was performed by adding a small amount of acid. The final solution could be introduced directly into HPLC system for the determination of the analytes. Under optimal conditions, recoveries for the analysis of spiked surface water samples ranged from 83.6% to 95.1% with relative standard deviation of 2.0–5.5%. For milk samples, relative recoveries were 95.9–104.6% with relative standard deviation of 3.4–6.7%. The enrichment factors ranged from 41.5 to 48.1 for 10 mL water samples, and from 3.6 to 4.4 for 1 mL MeCN extracts of milk. Limits of detection ranged from 0.13 to 0.51 ng/mL, and from 3.0 to 8.5 ng/g for four TCs in surface water and milk samples, respectively.  相似文献   

8.
For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid–liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035–10.0 μg mL−1 with r2 = 0.997 and the detection limit of 0.010 μg mL−1 were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation.  相似文献   

9.
A simple, rapid, and sensitive method is presented to determine seven trace quinolone antibacterials simultaneously in milk, egg, chicken and fish. This method is based on the combination of polymer monolith in-tube solid-phase microextraction with liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI-QTOF-MS). LC/ESI-QTOF-MS offers the capability of unequivocal identification of target compounds from complex matrices, as well as the possibility of quantitation at low-level concentrations in real samples. The extraction was performed with a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic column. Under the optimized extraction conditions, good extraction efficiencies for the targets were obtained with no matrix interference in the subsequent LC/ESI-QTOF-MS. Good linearities were obtained for seven quinolones with the correlation coefficients (R) above 0.9951. The limits of detection (S/N = 3) for seven quinolones were found to be 0.3–1.2 ng/g in egg, 0.2–3.0 ng/mL in milk, 0.2–0.7 ng/g in chicken and 0.2–1.0 ng/g in fish. The recoveries of quinolones spiked in four different matrices ranged from 80.2 to 115.0%, with relative standard deviations less than 14.5%. The developed method was applied for the determination of quinolone residues in animal-producing food, and the positive samples were confirmed with high number of identification points (IPs) according to the IP system defined by the European Union (Commission Decision 2002/657/EC).  相似文献   

10.
This work reports a rapid, reliable and sensitive multi-residue method for the simultaneous determination of six resorcylic acid lactones in bovine milk by ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). The resorcylic acid lactones were extracted, purified, and concentrated from milk samples in one step using a solid-phase extraction (SPE) cartridge that contained a polymeric mixed-mode anion-exchange sorbent. The analysis was performed on a Waters Acquity BEH C18 column utilizing a gradient elution profile. Each LC run was completed in 3.5 min. The analytes were detected by multiple reaction monitoring (MRM) using electrospray ionization (ESI) negative mode. Mean recoveries from fortified samples ranged from 92.6% to 112.5%, with relative standard deviations lower than 11.4%. Using 5 mL bovine milk, the limits of detection and quantification for resorcylic acid lactones were in the ranges of 0.01–0.05 and 0.05–0.2 μg/L, respectively. The application of this newly developed method was demonstrated by analyzing bovine milk samples from markets.  相似文献   

11.
A simple, sensitive and reliable analytical method for the rapid simultaneous determination of dexamethasone and betamethasone in milk by high performance liquid chromatography–negative electrospray ionization tandem mass spectrometry (HPLC–NESI-MS/MS) with isotope dilution was developed. Samples were directly purified through C18 cartridge. Then the eluate was dried under nitrogen and residues were dissolved in mobile phase. Samples were analyzed by HPLC–MS/MS on a Hypercarb graphite column with a mixture of acetonitrile–water–formic acid as mobile phase. The samples were quantified using dexamethasone-D4 as an internal standard. The procedure was validated according to the European Union regulation 2002/657/EC determining specificity, decision limit (CCα), detection capability (CCβ), trueness, precision, linearity and stability. The method is demonstrated to be suitable for the determination of dexamethasone and betamethasone in milk. The total time required for the analysis of one sample was about 35 min.  相似文献   

12.
A novel, facile and inexpensive solid phase extraction (SPE) method using ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol grafted Fe3O4 nanoparticles coupled with spectrofluorimetric detection was proposed for determination of aflatoxin M1 (AFM1) in liquid milk samples. The method uses the advantage fluorescence enhancement by β-cyclodexterin complexation of AFM1 in 12% (v/v) acetonitrile–water and the remarkable properties of Fe3O4 nanoparticles namely high surface area and strong magnetization were utilized to achieve high enrichment factor (57) and satisfactory extraction recoveries (91–102%) using only 100 mg of magnetic adsorbent. Furthermore, fast separation time of about 15 min avoids many time-consuming column-passing procedures of conventional SPE. The main factors affecting extraction efficiency including pH value, desorption conditions, extraction/desorption time, sample volume, and adsorbent amount were evaluated and optimized. Under the optimal conditions, a wide linear range of 0.04–8 ng mL−1 with a low detection limit of 0.015 ng mL−1 was obtained. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method.  相似文献   

13.
In this work, the simple analytical method for the determination of four fluoroquinolone antibiotics: ciprofloxacin, enrofloxacin, norfloxacin and danofloxacin, in environmental surface water samples is described. Sample pretreatment step was performed by the application of a technique based on supported liquid membrane extraction with the configuration of single hollow fiber (HF-SLM). The HPLC system with diode array detection was used for final analysis of studied analytes. Various parameters affecting the extraction efficiency during HF-SLM enrichment, such as type of membrane diluent, pH of donor (sample) and acceptor phases, as well as an enrichment time and salt content of sample were studied. Using the presented hollow-fiber extraction high recovery (70–80%) was achieved. It gave enrichment factor above 100. The detection limits in surface water samples, for the four target antibiotics, were at range 0.01–0.02 μg/l, when 10 ml samples were processed. The obtained results demonstrate the applicability of presented method for the selective extraction of fluoroquinolones in environmental water samples at ultratrace level. Errors, expressed as relative standard deviation (RSD) were below 8%, for all tested concentration levels.  相似文献   

14.
肖小华  尹怡  胡玉玲  李攻科 《色谱》2007,25(2):234-237
建立了液相微萃取-高效液相色谱联用(LPME-HPLC)测定爽肤水中痕量的雌三醇、雌二醇、炔雌醇和雌酮的分析方法,研究了萃取溶剂种类、接受相体积、搅拌速度、萃取时间等对萃取效率的影响。结果表明,该方法对4种雌激素的富集倍数可达到247~343倍,方法的线性范围为1~200 μg/L,检出限为0.4~1.0 μg/L,6次平行测定的相对标准偏差为3.6%~7.3%,爽肤水中的加标回收率为101.2%~114.9%。方法简单快速、灵敏度高、环境友好,满足痕量雌激素分析的要求。  相似文献   

15.
A novel liquid–liquid–solid microextraction (LLSME) technique based on porous membrane-protected molecularly imprinted polymer (MIP)-coated silica fiber has been developed. In this technique, a MIP-coated silica fiber was protected with a length of porous polypropylene hollow fiber membrane which was filled with water-immiscible organic phase. Subsequently the whole device was immersed into aqueous sample for extraction. The LLSME technique was a three-phase microextraction approach. The target analytes were firstly extracted from the aqueous sample through a few microliters of organic phase residing in the pores and lumen of the membrane, and were then finally extracted onto the MIP fiber. A terbutylazine MIP-coated silica fiber was adopted as an example to demonstrate the feasibility of the novel LLSME method. The extraction parameters such as the organic solvent, extraction and desorption time were investigated. Comparison of the LLSME technique was made with molecularly imprinted polymer based solid-phase microextraction (MIP-SPME) and hollow fiber membrane-based liquid-phase microextraction (HF-LPME), respectively. The LLSME, integrating the advantages of high selectivity of MIP-SPME and enrichment and sample cleanup capability of the HF-LPME into a single device, is a promising sample preparation method for complex samples. Moreover, the new technique overcomes the problem of disturbance from water when the MIP-SPME fiber was exposed directly to aqueous samples. Applications to analysis of triazine herbicides in sludge water, watermelon, milk and urine samples were evaluated to access the real sample application of the LLSME method by coupling with high-performance liquid chromatography (HPLC). Low limits of detection (0.006–0.02 μg L−1), satisfactory recoveries and good repeatability for real sample (RSD 1.2–9.6%, n = 5) were obtained. The method was demonstrated to be a fast, selective and sensitive pretreatment method for trace analysis of triazines in complex aqueous samples.  相似文献   

16.
In this work, we propose solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME) as a simple, rapid and efficient sample pretreatment technique for the extraction and preconcentration of organochlorine pesticides (OCPs) from environmental water samples. Separation and analysis of fifteen OCPs was carried out by gas chromatography–mass spectrometry (GC/MS). Parameters affecting the extraction efficiency were systematically investigated. The detection limits were in the range of 2–50 ng L−1 using selective ion monitoring (SIM). The precision of the proposed method, expressed as relative standard deviation, varied between 3.5 and 10.2% (n = 5). Results from the analysis of spiked environmental water samples at the low-ppb level met the acceptance criteria set by the EPA.  相似文献   

17.
The ISO 25101 (International Organization for Standardization, Geneva) describes a new international standard method for the determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) in unfiltered samples of drinking and surface waters. The method is based on the extraction of target analytes by solid phase extraction, solvent elution, and determination by high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). For the determination of the performance of this method, more than 20 laboratories from 9 different countries participated in an inter-laboratory trial in 2006. In addition, inter-laboratory trials were conducted in 2008 and 2009 for the analysis of perfluoroalkylsubstances (PFASs), including PFOS and PFOA, in water samples by following the protocols of Japanese Industrial Standard (JIS). Overall, the repeatability coefficients of variation (i.e., within-laboratory precision) for PFOS and PFOA in all water samples were between 3 and 11%, showing a adequate precision of the ISO and JIS methods. The reproducibility coefficients of variation (i.e., between-laboratory precision) were found to vary within a range of 7–31% for surface water and 20–40% for wastewater. The recoveries of PFOS and PFOA, as a measure of accuracy, varied from 84 to 100% for surface water and from 84 to 100% for wastewater among the samples with acceptable criteria for internal standards recovery. The determined concentrations of PFASs in samples compared well with the “true” values. The results of the inter-laboratory trial confirmed that the analytical methods are robust and reliable and can be used as a standard method for the analysis of target compounds in water samples.  相似文献   

18.
A rapid liquid chromatography tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the simultaneous identification, confirmation and quantitation of seven licensed anti-inflammatory drugs (AIDs) in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. Two classes of AIDs were investigated, corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). The developed method is capable of detecting and confirming dexamethasone (DXM), betamethasone (BTM), prednisolone (PRED), tolfenamic acid (TLF), 5-hydroxy flunixin (5-OH-FLU), meloxicam (MLX) and 4-methyl amino antipyrine (4-MAA) at their associated maximum residue limits (MRLs). These compounds represent all the corticosteroids and NSAIDs licensed for use in bovine animals producing milk for human consumption. These compounds have never been analysed before in the same method and also 4-methyl amino antipyrine has never been analysed with the other licensed NSAIDs. The method can be considered rapid as permits the analysis of up to 30 samples in one day. Milk samples are extracted with acetonitrile; sodium chloride is added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid–liquid purification by the addition of hexane. The purified extract is finally evaporated to dryness and reconstituted in a water/acetonitrile mixture and determination is carried out by LC–MS/MS. Decision limit (CCα) values and detection capability (CCβ) values have been established for each compound.  相似文献   

19.
A restricted access media–molecularly imprinted polymer (RAM–MIP) for cyclobarbital has been developed for selective extraction of antiepileptics in river water samples. The RAM–MIP was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate as a functional monomer and cross-linker, respectively, by a multi-step swelling and polymerization method followed by a surface modification technique. The RAM–MIP for cyclobarbital showed molecular recognition abilities for phenobarbital, amobarbital and phenytoin as well as cyclobarbital. Thus, selective analysis of antiepileptics in river water samples was attained with RAM–MIP extraction followed by column-switching liquid chromatography–tandem mass spectrometry. The concentrations of phenobarbital and phenytoin in river water samples were about 15 and 4 ng/L, respectively, while that of amobarbital was below the limit of quantitation.  相似文献   

20.
A simple, rapid and sensitive method based on microextraction in packed syringe (MEPS), in combination with gas chromatography–mass spectrometry (GC–MS) was developed. Polyaniline (PANI) nanowires network was synthesized and used as sorbent of MEPS for the multiresidue determination of selected analytes from triazine, organochlrorine and organophosphorous pesticides in aqueous samples. The PANI nanowires network was prepared using soft template technique and its characterization was studied by scanning electron microscopy (SEM). The presence of micelles in this methodology showed to be an important parameter in shaping the growing polymer. Hexadecyltrimethylammonium bromide (HTAB) was used as structure directing agent in PANI preparation procedure and this was led to the formation of nanowires with diameters ranging from 35 nm to 45 nm. The synthesized PANI nanowires network showed higher extraction capability in comparison with the bulk PANI. Important parameters influencing the extraction and desorption processes including desorption solvent, elution volume, draw–eject cycles of sample, draw–eject mode, pH effect and amount of sorbent were optimized. Limits of detection were in the range of 0.07–0.3 ng mL−1 using time scheduled selected ion monitoring (SIM) mode. The linearity of method was in the range from 0.5–200 ng mL−1 to 0.2–1000 ng mL−1. The method precision (RSD %) with three replicates were in the range of 5.3–18.4% at the concentration level of 5 ng mL−1. The developed method was successfully applied to the Zayandeh-rood river water samples and the matrix factor obtained for the spiked real water samples were in the range of 0.79–0.94.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号