首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires–graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2–ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1–45.4 mM, with a detection limit of 10 μM (S/N = 3) and detection sensitivity of 59.0 μA cm−2 mM−1. These outstanding sensing performances enable the practical application of MnO2–ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring.  相似文献   

2.
An interesting mode of reactivity of MnO2 nanoparticles modified electrode in the presence of H2O2 is reported. The MnO2 nanoparticles modified electrodes show a bi-direction electrocatalytic ability toward the reduction/oxidation of H2O2. Based on this property, a choline biosensor was fabricated via a direct and facile electrochemical deposition of a biocomposite that was made of chitosan hydrogel, choline oxidase (ChOx) and MnO2 nanoparticles onto a glassy carbon (GC) electrode. The biocomposite is homogeneous and easily prepared and provides a shelter for the enzyme to retain its bioactivity. The results of square wave voltammetry showed that the electrocatalytic reduction currents increased linearly with the increase of choline chloride concentration in the range of 1.0 × 10−5 –2.1 × 10−3 M and no obvious interference from ascorbic acid and uric acid was observed. Good reproducibility and stability were obtained. A possible reaction mechanism was proposed.  相似文献   

3.
In this work, stable silver nanoparticles (AgNPs) are prepared by borohydride reduction. Autocatalytic oxidation reaction of AgNPs in the presence of hydrogen peroxide (H2O2) is investigated. Sharp silver stripping peak in linear sweep voltammogram is used to reflect H2O2 concentration and the detection limit of 0.5 μM is achieved. We have also explored the application of the simply prepared AgNP modified electrode for electrochemical tracking H2O2 secretion in live cells. This facile strategy shows excellent sensitivity, stability and has great potential use in physiological and pathological applications.  相似文献   

4.
In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H2O2) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H2O2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas.  相似文献   

5.
In this report, a highly sensitive amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes (MnO2/VACNTs) for determination of hydrogen peroxide (H2O2) was fabricated by electrodeposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer and X-ray diffraction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were applied to investigate the electrochemical properties of the MnO2/VACNTs nanocomposite electrode. The mechanism for the electrochemical reaction of H2O2 at the MnO2/VACNTs nanocomposite electrode was also discussed. In borate buffer (pH 7.8, 0.20 M), the MnO2/VACNTs nanocomposite electrode exhibits a linear dependence (R = 0.998) on the concentration of H2O2 from 1.2 × 10−6 M to 1.8 × 10−3 M, a high sensitivity of 1.08 × 106 μA M−1 cm−2 and a detection limit of 8.0 × 10−7 M (signal/noise = 3). Meanwhile, the MnO2/VACNTs nanocomposite electrode is also highly resistant towards typical inorganic salts and some biomolecules such as acetic acid, citric acid, uric acid and d-(+)-glucose, etc. In addition, the sensor based on the MnO2/VACNTs nanocomposite electrode was applied for the determination of trace of H2O2 in milk with high accuracy, demonstrating its potential for practical application.  相似文献   

6.
A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C7H4O2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H2O2) in the range of 0.3–20,000 μM, to nitrite (NO2) for 1.3 μM–1660 μM and 2262 μM–1,33,000 μM, to glucose for 2.0–1022 μM, with a low detection limit of 0.08 μM for H2O2, 0.5 μM for NO2, 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (ks) for Mb and GOx were estimated as 2.05 s−1 and 2.45 s−1, respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface.  相似文献   

7.
Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1–15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM−1 with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis.  相似文献   

8.
《Electroanalysis》2017,29(5):1481-1489
Polymorphs of Manganese di oxide (MnO2) such as alpha (α), beta (β), gamma (γ), epsilon (ϵ), and MnOOH type materials were prepared via hydrothermal approach under different conditions. The samples were characterized by XRD, FESEM, FT‐IR, Raman and BET analysis. Cyclic voltammetry (CV) analysis confirm that α ‐ MnO2 shows better electro‐catalytic ability. Amperometry sensing of hydrogen peroxide (H2O2) was carried out by varying applied potential value with the polymorphs of MnO2. Compared with the other phases of MnO2, α ‐ MnO2 shows high linear range up to 20μM. The calculated sensitivity value for H2O2 sensing of different phases is in the order of α ‐ MnO2, β ‐ MnO2, ϵ ‐ MnO2, γ ‐ MnO2, MnOOH and found to be 0.094 mA μM−1 cm−2 > 0.072 mA μM−1 cm−2 > 0.07 mA μM−1 cm−2 > 0.03 mA μM−1 cm−2 > 0.01 mA μM−1 cm−2 respectively. All the characterization results reveal that crystalline phase plays a vital role in electrochemical behavior rather than crystalline size, morphology, surface charge, surface area.  相似文献   

9.
In this report, carbon-based gold core silver shell Au-Ag bimetallic nanocomposite (Au-Ag/C NC) was synthesized using carbon dots (C-dots) as the reductant and stabilizer by a facile green sequential reduction approach. The structure and morphology of the nanocomposite are characterized by ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The as synthesized Au-Ag/C NC exhibits good optic response toward hydrogen peroxide (H2O2) without adding any other chromogenic agents. The characteristic surface plasmon resonance (SPR) absorbance peak of Au-Ag/C NC declined and red-shifted with the solution color changing from reddish orange to light pink when adding H2O2 owing to the etching effect of H2O2 towards Ag. Thus, a simple colorimetric and UV strategy for sensitive detection of H2O2 is proposed. It provides the wide linear range for detection of H2O2 from 0.8–90 μM and 90–500 μM, and the detection limit was as low as 0.3 μM (S/N = 3). In addition, this colorimetric strategy can also be applied to directly distinguish and detect of lactate by naked eye and UV–Vis. The linear range of colorimetric sensing towards lactate was 0.1–22 μM and 22–220 μM, which was successfully applied in the analysis of lactate in human serum.  相似文献   

10.
The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM−1 cm−2), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages.  相似文献   

11.
In this paper, LaNi0.6Co0.4O3 (LNC) nanoparticles were synthesized by the sol–gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H2O2 determination, linear response was obtained in the concentration range of 10 nM–100 μM with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05–200 μM with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H2O2 (1812.84 μA mM−1 cm−2) and glucose (643.0 μA mM−1 cm−2). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.  相似文献   

12.
It is possible to achieve high energy density and power density simultaneously for asymmetric supercapacitors by using pseudocapacitive materials with abundant ion intercalation/de-intercalation sites on the surface. Herein, a positive electrode based on feather-like MnO2 anchored on the activated carbon cloth is prepared, in which oxygen-enriched MnO2 nanorods with a radial sheet-like structure (OMO@AC) further form via electrochemical oxidation. Because of the large contact area with electrolyte and abundant oxidation functional groups on its surface, the OMO@AC displays excellent capacitance of 3,160 mF/cm2 at 1 mA/cm2. For the nitrogen-doped active carbon negative electrode, the capacitance is up to 1,875 mF/cm2 at 4 mA/cm2 due to the increase in disorder and defect on the carbon surface by N-doping. Furthermore, we verify the good electrochemical activity on the OMO@AC electrode surface by first-principles calculations and confirm the good matching degree between the positive and negative electrodes by CV testes. The aqueous oxygen-enriched MnO2// nitrogen-doped active carbon asymmetric supercapacitor exhibits an ultrahigh energy density of 8.723 mWh/cm3 at a power density of 14.248 mW/cm3 and display excellent cycle stability maintaining 95.5% after 10,000 cycles. The facile synthesis method and excellent performance provide a feasible way for the preparation of high-performance electrode materials for energy storage devices.  相似文献   

13.
Three Mn(II) polymers Mn(H2O)4(C5H6O4) 1, [Mn(H2O)2(C5H6O4)]·H2O 2 and Mn(H2O)(C6H8O4) 3 were synthesized (H2(C5H6O4) = glutaric acid, H2(C6H8O4) = adipic acid) under mild ambient conditions. The [Mn(H2O)2]2+ units in 2 are interlinked by the glutarate anions with a η4μ3 bridging mode to form 2D (4·82) topological networks, which are stacked via interlayer hydrogen bonds into a 3D (43·65·82)(47·63) topological net. Compound 3 crystallizes in the acentric space group P21 and exhibits significant ferroelectricity (remnant polarization Pr = 0.371 nC cm−2, coercive field Ec = 0.028 kV cm−1, saturation of the spontaneous polarization Ps = 0.972 nC cm−2). The adjacent MnO6 octahedrons in 3 are one atom-shared to generate the Mn2O11 bi-octahedron, leading into 1D metal oxide chains. The resulting chains are interconnected by the η5μ5 adipate anions to form new 2D (48·62) networks, which are held together via strong interlayer hydrogen bonds into 3D α-Po topological supra-molecular architecture. The temperature-dependent magnetic susceptibility data of 13 shows overall anti-ferromagnetic interactions between the metal ions bridged by the carboxylate groups.  相似文献   

14.
The development of an accurate and low-cost monitoring technique for hydrogen peroxide (H2O2) is a crucial demand in environment, food industry, medicine and biology. Herein, we report the design and synthesis of viologen terminated second (G2.0) and third generation (G3.0) poly(amidoamine) PAMAM dendrimers, followed by encapsulation with gold nanoparticles to form G2.0 and G3.0 Vio-PAMAM-AuNPs. The G2.0 and G3.0 Vio-PAMAM-AuNPs were deposited over glassy carbon electrode (GCE) to form G2.0 and G3.0 Vio-PAMAM-AuNPs/GCE modified electrodes, respectively. The electrochemical behavior of G2.0 and G3.0 Vio-PAMAM-AuNPs/GCEs were investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Both the G2.0 and G3.0 Vio-PAMAM-AuNPs/GCEs showed a pair of well-defined redox peaks in 0.1 M phosphate buffer corresponding to the redox behavior of viologen V2+?V?+ radical. G3.0 Vio-PAMAM-AuNPs/GCE has shown a higher current response than that of the G2.0 Vio-PAMAM-AuNPs/GCE and further the G3.0 Vio-PAMAM-AuNPs/GCE demonstrated impressive electrocatalytic activity towards reduction of H2O2, based on which a nonenzymatic sensor for the detection of H2O2 has been developed. The developed nonenzymatic sensor has displayed excellent performance towards H2O2 detection in the broad linear range of 0.1 mM – 6.2 mM with a low detection limit of 27 μM and high sensitivity of 202.7 μA mM?1 cm?2. The G3.0 Vio-PAMAM-AuNPs/GCE modified electrode with its extensive dendritic structure creating tailored sanctuary to accommodate a large number of viologen mediator and AuNPs exhibited good operational and long term stability and further the quantification of H2O2 in real samples has been verified by standard addition method.  相似文献   

15.
A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H2O2 produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL−1 to 270.69 mg dL−1), low detection limit (0.25 mg dL−1), and high sensitivity (49.61 μA mM−1 cm−2). The precision value for ten replicates was 3.76% RSD for 1 mM H2O2. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6–100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time.  相似文献   

16.
Jianwen Wang  Yifeng Tu 《Talanta》2009,77(4):1454-4466
A novel disposable third-generation hydrogen peroxide (H2O2) biosensor based on horseradish peroxidase (HRP) immobilized on the gold nanoparticles (AuNPs) electrodeposited indium tin oxide (ITO) electrode is investigated. The AuNPs deposited on ITO electrode were characterized by UV-vis, SEM, and electrochemical methods. The AuNPs attached on the ITO electrode surface with quasi-spherical shape and the average size of diameters was about 25 nm with a quite symmetric distribution. The direct electron chemistry of HRP was realized, and the biosensor exhibited excellent performances for the reduction of H2O2. The amperometric response to H2O2 shows a linear relation in the range from 8.0 μmol L−1 to 3.0 mmol L−1 and a detection limit of 2 μmol L−1 (S/N = 3). The value of HRP immobilized on the electrode surface was found to be 0.4 mmol L−1. The biosensor indicates excellent reproducibility, high selectivity and long-term stability.  相似文献   

17.
In this work, titanate nanotubes (TNTs), polyaniline (PANI) and gold nanoparticles (GNPs) were assembled to form a ternary composite, which was then applied on an electrode as a scaffold of an electrochemical enzyme biosensor. The scaffold was constructed by oxidatively polymerising aniline to produce an emeraldine salt of PANI on TNTs, followed by gold nanoparticle deposition. A novel aspect of this scaffold lies in the use of the emeraldine salt of PANI as a molecular wire between TNTs and GNPs. Using horseradish peroxidase (HRP) as a model enzyme, voltammetric results demonstrated that direct electron transfer of HRP was achieved at both TNT-PANI and TNT-PANI-GNP-modified electrodes. More significantly, the catalytic reduction current of H2O2 by HRP was ∼75% enhanced at the TNT-PANI-GNP-modified electrode, compared to that at the TNT-PANI-modified electrode. The heterogeneous electron transfer rate constant of HRP was found to be ∼3 times larger at the TNT-PANI-GNP-modified electrode than that at the TNT-PANI-modified electrode. Based on chronoamperometric detection of H2O2, a linear range from 1 to 1200 μM, a sensitivity of 22.7 μA mM−1 and a detection limit of 0.13 μM were obtained at the TNT-PANI-GNP-modified electrode. The performance of the biosensor can be ascribed to the superior synergistic properties of the ternary composite.  相似文献   

18.
This paper reports a facile and general method for preparing an imprinted polymer thin shell with Mn-doped ZnS quantum dots (QDs) at the surface of silica nanoparticles by stepwise precipitation polymerization to form the highly-controllable core–shell nanoparticles (MIPs@SiO2–ZnS:Mn QDs) and sensitively recognize the target 2,4-dichlorophenol (2,4-DCP). Acrylamide (AM) and ethyl glycol dimethacrylate (EGDMA) were used as the functional monomer and the cross-linker, respectively. The MIPs@SiO2–ZnS:Mn QDs had a controllable shell thickness and a high density of effective recognition sites, and the thickness of uniform core–shell 2,4-DCP-imprinted nanoparticles was controlled by the total amounts of monomers. The MIPs@SiO2–ZnS:Mn QDs with a shell thickness of 45 nm exhibited the largest quenching efficiency to 2,4-DCP by using the spectrofluorometer. After the experimental conditions were optimized, a linear relationship was obtained covering the linear range of 1.0–84 μmol L−1 with a correlation coefficient of 0.9981 and the detection limit (3σ/k) was 0.15 μmol L−1. The feasibility of the developed method was successfully evaluated through the determination of 2,4-DCP in real samples. This study provides a general strategy to fabricate highly-controllable core–shell imprinted polymer-contained QDs with highly selective recognition ability.  相似文献   

19.
This article reports on carbon nanotube/manganese dioxide (CNT–MnO2) composites as electrochemical tags for non-enzymatic signal amplification in immunosensing. The synthesized CNT–MnO2 composites showed good electrochemical activity, electrical conductivity and stability. The electrochemical signal of CNT–MnO2 composites coated glassy carbon electrode (GCE) increased by nearly two orders of magnitude compared to bare GCE in hydrogen peroxide (H2O2) environment. CNT–MnO2 composite was subsequently validated as electrochemical tags for sensitive detection of α-fetoprotein (AFP), a tumor marker for diagnosing hepatocellular carcinoma. The electrochemical immunosensor demonstrated a linear response on a log-scale for AFP concentrations ranging from 0.2 to 100 ng mL−1. The limit of detection (LOD) was estimated to be 40 pg mL−1 (S/N = 3) in PBS buffer. Further measurements using AFP spiked plasma samples revealed the applicability of fabricated CNT–MnO2 composites for clinical and diagnostic applications.  相似文献   

20.
A new concept for the electrochemical detection of hydrogen peroxide, and organic hydroperoxides is presented. One advantage of the significance of this technique is that it does not require chemical modification of the electrode or addition of enzymes. Direct electro-reduction of the peroxides was not observed on the carbon disk electrode as it is a kinetically slow process. Redox cycling of the iron complex is apparent as FeIIEDTA rapidly reduces the O-O bond of the peroxides (Fenton Reaction) upon its production by the kinetically facile electro-reduction of FeIIIEDTA. This provides an enhanced and steady-state reductive current as observed by cyclic voltammetry. These features are indicative of the electrocatalytic (EC′) mechanism. A calibration curve was constructed based on the chronoamperometric response at 32 s and a detection limit for H2O2 and t-butyl hydroperoxide was calculated to be 0.4 μM and 20 µM, respectively. This difference is attributable to the rate in which the iron(II) complex reduces the O-O bond, H2O2 (2.3 × 105 M− 1 s− 1) being faster than for the organic peroxide (5.1 × 104 M− 1 s− 1). The FeIIEDTA complex was observed to be unreactive toward dialkyl peroxides. This method may find use in the detection of peroxide-based explosives or in enzymatic assays as it is rapid, simple, inexpensive and should prove to be robust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号