首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new circular dichroism sensor for detecting Ni2+ and Co2+ was proposed for the first time using chiral chelating quantum dots. The detection principle was based on changing of circular dichroism signals of the chiral quantum dots when forming a chiral complex with Ni2+ or Co2+. l-Cysteine capped cadmium sulfide quantum dots (l-Cyst-CdS QDs) were proposed as a chiral probe. The CD spectrum of l-Cyst-CdS QDs was significantly changed in the presence of Ni2+ and Co2+. On the other hand, other studied cations did not alter the original CD spectrum. Moreover, when increasing the concentration of Ni2+ or Co2+, the intensity of the CD spectrum linearly increased as a function of concentration and could be useful for the quantitative analysis. The proposed CD sensor showed linear working concentration ranges of 10–60 μM and 4–80 μM with low detection limits of 7.33 μМ and 1.13 μM for the detection of Ni2+ and Co2+, respectively. Parameters possibly affected the detection sensitivity such as solution pH and incubation time were studied and optimized. The proposed sensor was applied to detect Ni2+ and Co2+ in real water samples, and the results agreed well with the analysis using the standard ICP-OES.  相似文献   

2.
Unmodified cysteamine capped nanocrystalline cadmium sulfide quantum dots (Cys-CdS QDs) were demonstrated as a selective turn-on fluorescence sensor for sensing adenosine-5′-triphosphate (ATP) in aqueous solution for the first time. The fluorescence intensity of the Cys-CdS QDs was significantly enhanced in the presence of ATP. In addition, the fluorescence intensity of the Cys-CdS QDs increased when increasing ATP concentrations. On the other hand, other phosphate metabolites and other tested common anions did not significantly alter the fluorescence intensity of the Cys-CdS QDs. In addition, this sensor showed excellent discrimination of pyrophosphate (PPi) from ATP detection. The proposed sensor could efficiently be used for ATP sensing at very low concentration with LOD of 17 μM with the linear working concentration range of 20–80 μM. The feasibility of the proposed sensor for determining ATP in urine samples was also studied, and satisfactory results were obtained.  相似文献   

3.
Interactions between various modified semiconductor nanocrystal, cadmium sulfide quantum dots (CdS QDs) and bovine serum albumin (BSA) and lysozyme (LZY) were investigated. CdS QDs capped with mercaptoethanol (MPA), l-cysteine (Lcys) and glutathione (GSH) were synthesized in aqueous solution and characterized by UV-vis and fluorescence spectrum. Circular dichroism (CD) and fluorescence spectrum were used to detect the interactions between as-prepared CdS QDs and protein molecules. The interaction parameters, including binding constant (Kb), binding site number (n) and quench constant (Kq), were determined by fluorescence spectrum. The changes of secondary structures of the proteins were detected by CD. The results imply that CdS QDs modified by different agents have dramatically different binding strength with protein molecules. The results obtained here analyze the biosafety of CdS QDs in terms of the biological behavior of biomolecules and could serve as basis for the application of CdS QDs to bioscience.  相似文献   

4.
A novel nanohybrid ratiometric fluorescence probe comprised of carbon dots (C-dots) and hydrophilic CdSe@ZnS quantum dots (QDs) has been developed by simply mixing the blue-emission C-dots with red-emission carboxylmethyldithiocarbamate modified CdSe@ZnS QDs (GDTC-QDs). The nanohybrid ratiometric fluorescence probe exhibits dual emissions at 436 nm and 629 nm under a single excitation wavelength. Due to the strong chelating ability of GDTC on the surface of QDs to mercuric ion (Hg2+), the fluorescence of the GDTC-QDs in the nanohybrid system could be selectively quenched in the presence of Hg2+ while the fluorescence of the C-dots remained constant, resulting in an obviously distinguishable fluorescence color evolution (from red to blue) of the nanohybrid system. The detection limit of this method was found to be as low as 0.1 μM. Furthermore, the recovery result for Hg2+ in real samples including tap water and lake water by this method was satisfying, suggesting its potential application for Hg2+ sensing.  相似文献   

5.
We have developed a circular-dichroism thermal lens microscope for UV wavelengths (UV-CD-TLM), for the first time, to realize sensitive chiral analysis on a microchip. Quasi-continuous-wave phase modulation of a pulsed UV laser was used to generate left-circularly polarized light and right-circularly polarized light and to detect the generated TL signal amplitude and phase with a lock-in amplifier. The amplitude and phase were used to determine the concentration and chirality, respectively, of a sample. The basic principle of UV-CD-TLM for chiral analysis on a microchip was verified by measuring aqueous solutions of optically active camphorsulfonic acids (CSA). Lower limits of detection (LOD) were calculated at S/= 2 and were 8.7 × 10−4 mol L−1A = 5.2 × 10−6 Abs.) for (+)-CSA and 8.4 × 10−4 mol L−1A = 5.0 × 10−6 Abs.) for (−)-CSA. In terms of number of molecules, LODs for UV-CD-TLM were calculated to be 8.7 fmol and 8.4 fmol, respectively. This is at least three orders of magnitude lower than previously obtained. The applicability of UV-CD-TLM for chiral analysis on a microchip was verified. Figure Sensitive chiral analysis by thermal lens microscope (TLM)  相似文献   

6.
CdS quantum dots (QDs) modified with l-cysteine has been prepared by one step. They are water-soluble and biocompatible. To improve CdS QDs stability and interaction between silver ion and functionalized CdS QDs in aqueous solution, some amounts of fresh l-cysteine were added to functionalized CdS solution. Based on the characteristic fluorescence enhancement of CdS QDs at 545 nm by silver ions in the presence of some amounts of fresh l-cysteine, simultaneously, a gradual red shift of fluorescence emission bands of CdS QDs from 545 to 558 nm was observed. A simple, rapid, sensitive and specific detection method for silver ion was proposed. Under optimum conditions, the fluorescence intensity of CdS QDs is linearly proportional to silver concentration from 2.0 × 10−8 to 1.0 × 10−6 mol/L with a detection limit of 5.0 × 10−9 mol/L. In comparison with single organic fluorophores, functionalized CdS quantum dots are brighter, more stable against photobleaching, and don’t suffer from blinking. Furthermore, owing to the fluorescence enhancement effect of CdS QDs by silver ion, the proposed method showed lower detection blank and higher sensitivity. Possible fluorescence enhancement mechanism was also studied.  相似文献   

7.
CdSe/CdS quantum dots(QDs) functionalized by thiourea(TU) were synthesized and used as a fluorescent sensor for mercury ion detection.The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid(TGA).It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg~(2+).The quantitative detection of Hg~(2+) with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg~(2+) added in the range of1-300 μg L~(-1).A detection limit of 0.56 μg L~(-1) was achieved.The sensor showed superior selectivity for Hg~(2+) and was successfully applied to the determination of mercury in environmental samples with satisfactory results.  相似文献   

8.
A QDs-based immune fl uorescence test strips was built up for carcino-embryonic antigen detection to realize cancers POCT diagnostic, with a sensitivity of 0.72 ng/mL in 25 min.  相似文献   

9.
Nanohybrids were formed from 3-mercaptopropionic acid(MPA)-coated Mn-doped ZnS quantum dots(QDs) and methylene blue(MB) via electrostatic interaction, and then used in the detection of trace DNA.The principle of detection is as follows: MB binds with Mn-doped ZnS QDs via electrostatic interaction,and then quenches the room temperature phosphorescence(RTP) of the QDs through photoinduced electron-transfer(PIET). After the addition of DNA, MB binds with DNA through intercalation and electrostatic interaction, and desorbs from the surfaces of Mn-doped ZnS QDs, which recovers the RTP of the QDs. On this basis, a DNA detection method based on the properties of RTP was set up. This method shows a detection range of 0.2–20 mg/L, and a detection limit of 0.113 mg/L. Since this method is based on the RTP of QDs, it is not interfered by the background fluorescence or scattering light in vivo, and thus,avoids complex sample pretreatment. Thus, this method is very feasible for detection of trace DNA in biofluids.  相似文献   

10.
Circular dichroism (CD) alone cannot be used to derive absolute values of Δε for optically active transition metal (TM) complexes in the frequent instances in which pure, resolved standards are unavailable. In the past, this has led to discrepancies in the literature regarding the most appropriate value for use in assessing optical purity. We have recently shown that capillary electrophoresis (CE), employing a chiral selecting agent in the buffer, is a highly effective means to fully resolve the Λ and Δ enantiomers of [M(diimine)3]n+ complexes. In this extension to that work, CE peak areas for optically active (but not optically pure) TM complexes are used in combination with CD spectra that are independently obtained for the same samples to extrapolate absolute circular dichroism values, Δε, for the pure Δ and Λ isomers. Examples are provided for a variety of tris- and bis-diimine systems, including different coordinated metal (e.g., Cr, Ni, Ru, Co) and ligand (e.g., bipyridine, phenanthroline, oxalato, cyano, etc.) combinations rendering outer sphere complex charges of 0, +1, +2 and +3. Based on the absolute values for Δε presented in this report, accurate measurement of optical purity for a number of [M(diimine)3]n+ and cis-[M(diimine)2X2]n+ systems is now possible via routine CD analysis.  相似文献   

11.
A scheme for the simultaneous determination of oxygen and temperature using quantum dots and a ruthenium complex is demonstrated. The luminescent complex [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)]2+ is immobilized in a non-hydrolytic sol-gel matrix and used as the oxygen sensor. The temperature information is provided by the luminescent emission of core-shell CdSe-ZnS semiconductor nanocrystals immobilized in the same material. Measurements of oxygen and temperature could be performed with associated errors of ±2% of oxygen concentration and ±1 °C, respectively. In addition, it is shown that while the dye luminescence intensity is quenched both by oxygen and temperature, the nanocrystals luminescent emission responds only to temperature. Results presented demonstrate that the combined luminescence response allows the simultaneous assessment of both parameters using a single optical fiber system. In particular, it was shown that a 10% error in the measured oxygen concentration, induced by a change in the sample temperature, could be compensated using the nanocrystals temperature information and a correction function.  相似文献   

12.
As a new detection model, the reversible fluorescence “turn-off-on” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many biochemical materials, especially in the researches on the interactions between anticancer drugs. The previous studies, however, mainly focused on simple-structured oligonucleotides and Calf thymus DNA. G-quadruplex, an important target for anti-cancer drug with special secondary structure, has been stimulating increasing research interests. In this paper, we report a new detection method based on the fluorescence “turn-off-on” model with water-soluble ZnCdSe QDs as the fluorescent probe, to analyze the interactions between anticancer drug (N-methyl-4-pyridyl) porphyrin (TMPyP) and nucleic acid, especially the G-quadruplex. The fluorescence of QDs can be quenched by TMPyP via photo-induced electron transfer and fluorescence resonance energy transfer, while on the other hand, the combination between TMPyP and G-quadruplex releases QDs from their quenchers and thus recovers the fluorescence. Most importantly, the fluorescence “turn-off-on” model has been employed, for the first time, to analyze the impacts of special factors on the interaction between TMPyP and G-quadruplex. The excellent selectivity of the system has been verified in the studies of the interactions between TMPyP and different DNAs (double-stranded DNA, single-stranded G-quadruplex, and different types of G-quadruplexes) in Na+ or K+-containing buffer.  相似文献   

13.
We have developed a novel method for the determination of iodate based on the carboxymethyl cellulose-capped CdS quantum dots (QDs). Factors affecting the iodate detection were investigated, and the optimum conditions were determined. Under the optimum conditions, the relative fluorescence intensity of CdS quantum dots was linearly proportional to IO3 over a concentration range from 1.0 × 10−8 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9987 and a detection limit of 6.0 nmol L−1. Iodide, being oxidized by bromine to form iodate, was detected indirectly. The method was successfully applied to the determination of iodate and total amount of iodine in table salt samples. The related mechanism was also discussed.  相似文献   

14.
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8 × 10−12 M to 2.40 × 10−4 M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems.  相似文献   

15.
Long-emission carbon dots(CDs) is triggering immense enthusiasm on account of their intrinsic merits of high chemical stability and excellent optical properties.In this study,a facile and rapid approach was developed for the preparation of barium-doped carbon dots(Ba-CDs) with yellow fluo rescence emission and high quantum yields.Surface chemistry and the chemical architecture of the Ba-CDs was revealed under various spectroscopic methods.This work provides more insights into the effects of charge transfer caused by Ba heteroatoms,which is considered as the most challenging step in the investigation on luminescence mechanism.Remarkably,the prepared Ba-CDs were successfully applied as fluorescent probes in the detection of trace water in organic solvents(ethanol,isopropanol,acetone,tetrahydrofuran).Comparing with traditional fluorescent probes for water detection in organic solvents,Ba-CDs detection provides a more sensitive,much faster and more economical approach.  相似文献   

16.
Marwan W. Ghosn 《Tetrahedron》2010,66(23):3989-6803
The condensation between stereolabile 1,8-bis(3′-formyl-4′-hydroxyphenyl)naphthalene, 1, and two amino acid molecules results in the formation of chiral diimines exhibiting strong CD signals. This reaction has been used to develop a chiroptical sensing method for the determination of the absolute configuration and enantiomeric composition of unprotected amino acids. This sensing approach is based on distinctive chiral amplification due to central-to-axial chirality induction within the diimine scaffold formed and does not require the use of an enantiopure ligand or metal complex.  相似文献   

17.
Luminescent and stable CdSe/ZnS core/shell quantum dots (QDs) capped with L-carnitine are firstly prepared for optical determination of mercury ions in ethanol. LC capped QDs have desirable dispersibility, uniformity and good fluorescence properties and were characterized by fluorescence spectroscopy, transmission electron microscopy and infrared spectra. The functionalized QDs turned out to exhibit excellent long-term stability. The modified QDs allowed a highly sensitive determination of mercury ions via analyte-induced changes in the photoluminescence of them. A detection limit of 1.8 × 10−7 M (36.1 μg · L−1) of mercury ions was obtained, while the interfering effect of other ions (including alkali metal ions, alkali earth metal ions, Ni2+, Zn2+, Fe2+, Ag+ and anions such as NO3 , SO4 2−, CO3 2− and halogen ions) was negligible even at a very high concentration. The possible mechanism is discussed. Correspondence: Haibing Li, Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China; Zhinong Gao, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China  相似文献   

18.
This paper reports the construction of a simple CdTe quantum dots (QDs)-based sensor with 1,10-phenanthroline (Phen) as ligand, and the demonstration of a novel ligand displacement-induced fluorescence switch strategy for sensitive and selective detection of Cd2+ in aqueous phase. The complexation of Phen at the surface quenches the green photoluminescence (PL) of QDs dominated by a photoinduced hole transfer (PHT) mechanism. In the presence of Cd2+, the Phen ligands are readily detached from the surface of CdTe QDs, forming [Cd(Phen)2(H2O)2]2+ in solution, and as a consequence the PL of CdTe QDs switches on. The detection limit for Cd2+ is defined as ∼0.01 nM, which is far below the maximum Cd2+ residue limit of drinking water allowed by the U.S. Environmental Protection Agency (EPA). Two consecutive linear ranges allow a wide determination of Cd2+ from 0.02 nM to 0.6 μM. Importantly, this CdTe QDs-based sensor features to distinctly discriminate between Cd2+ and Zn2+, and succeeds in real water samples. This extremely simple strategy reported here represents an attempt for the development of fluorescent sensors for ultrasensitive chemo/biodetection.  相似文献   

19.
A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second‐generation immunomodulatory drug, using β‐cyclodextrin‐bonded stationary phases. Four cyclodextrin columns (β‐, hydroxypropyl‐β‐, carboxymethyl‐β‐, and sulfobutyl‐β‐cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β‐cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1–201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide‐β‐cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied.  相似文献   

20.
A simple and selective method for the determination of silver ions was developed by utilizing the red- shift in emission wavelength of the core-shell CdSe/Cd5 quantum dots (QDs) functionalized with rhodanine upon the addition of Ag+. A linear relationship was observed between the shift and the increase in concentration of Ag+ in the range of 0.0125-12.5 μmol/L. The mechanism of the red-shift was investigated and suggested that the coordination between Ag+ and rhodanine on the QDs surface caused an increase of particle size, which resulted in the red-shift of the QDs' emission wavelength. A detection limit of 2 nmol/L was achieved. The developed method showed superior selectivity and was successfully applied to the determination of silver in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号