首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Open Probe inlet was combined with a low thermal mass ultra‐fast gas chromatograph (GC), in‐vacuum electron ionization ion source and a mass spectrometer (MS) of GC–MS for obtaining real‐time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra‐fast GC provides ~30‐s separation, while if no separation is required, it can act as a transfer line with 2 to 3‐s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC–MS provides real‐time analysis combined with GC separation and library identification, and it uses the low‐cost MS of GC–MS. The operation of Open Probe fast GC–MS is demonstrated in the 30‐s separation and 50‐s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1‐min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC–MS and Open Probe fast GC–MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10‐s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Comprehensive two-dimensional gas chromatography (GC x GC) analysis has the capability to resolve many more components of complex mixtures than traditional single column GC analysis. There is an increasing need to provide reliable identification of these separated components; time-of-flight mass spectrometry (TOFMS) is the most appropriate technology to achieve this task. Rather than require MS for all GC x GC separations, it is desirable to assign peak identities to specific peak positions in the GC x GC separation space, and this necessitates matching peak retentions in the two experiments - GC x GC-FID and GC x GC-TOFMS. The atmospheric vs. vacuum outlet conditions confound this task. It is shown here that by employing a supplementary gas supply, provided to a T-union between the column outlet and the MS interface, it is possible to generate 2D chromatograms for GC x GC-FID and GC x GC-TOFMS that are essentially exactly matched. There is no degradation in separation performance or efficiency in the second column in the system interfaced to the T-union. Since the GC x GC-FID experiment uses hydrogen for maximum efficiency, and GC x GC-TOFMS uses helium carrier, translation of (conditions/retentions) must account for the different viscosities of the carrier gases. Translation of conditions is based on well-known principles established in single column analysis. Tabulated data illustrate that retention reproducibility was of the order of better than 4 s for the average first dimension retention difference, and about 40 ms for the average second dimension retention difference when comparing GC x GC-FID and GC x GC-TOFMS results. This should provide considerable support for identification in routine GC x GC-FID analysis of specific sample types, once the peaks in 2D separation space have been assigned identities through GC x GC-TOFMS analysis.  相似文献   

3.
We developed and evaluated a new method of low-pressure gas chromatography-tandem mass spectrometry (LP-GC/MS-MS) using a triple quadrupole instrument for fast analysis of 150 relevant pesticides in four representative fruits and vegetables. This LP-GC (vacuum outlet) approach entails coupling a 10 m, 0.53 mm i.d., 1 μm film analytical column between the MS transfer line and a 3 m, 0.15 mm i.d. capillary at the inlet. The MS creates a vacuum in the 10 m analytical column, which reduces the viscosity of the He carrier gas and thereby shifts the optimal flow rate to greater velocity. By taking advantage of the H(2)-like properties of He under vacuum, the short analytical column, a rapid oven temperature ramp rate, and the high selectivity and sensitivity of MS/MS, 150 pesticides were separated in <6.5 min. The 2.5 ms dwell time and 1 ms interscan delay of the MS/MS instrument were critical for achieving >8 data points across the 2-3 s wide peaks. To keep dwell and cycle times constant across all peaks, each segment consisted of 30 analytes (60 transitions). For assessment, we injected extracts of spiked broccoli, cantaloupe, lemon, and sweet potato from the updated QuEChERS sample preparation method. Average recoveries (n=72) were 70-120% for 144 of the pesticides, and reproducibilities were <20% RSD for all but 4 analytes. Also, detection limits were <5 ng/g for all but a few pesticides, depending on the matrix. In addition to high quality performance, the method gave excellent reliability and high sample throughput, including easy peak integration to obtain rapid results.  相似文献   

4.
In this work a fast gas chromatography set‐up with on‐column injection was optimized and evaluated with a model mixture of C8–C28 n‐alkanes. Usual injection volumes when using narrow‐bore (e. g., 0.1 mm i.d.) analytical columns are ca. 0.1 μL. The presented configuration allows introduction of 10–30‐fold larger sample volumes without any distortion of peak shapes. In the set‐up a normal‐bore retention gap (1 m×0.32 mm i. d.) was coupled to a narrow‐bore (4.8 m×0.1 mm i. d.×0.4 μm film thickness) analytical column using a low dead volume column connector. The effects of the experimental conditions such as inlet pressure, sample volume, initial injection temperature, and oven temperature on a peak focusing are discussed. H‐u curves for helium and hydrogen are used to compare their suitability for high speed gas chromatography and to show the dependence of separation efficiency on the carrier gas velocity at high inlet pressures. In the fast gas chromatography system a baseline separation of C10–C28 n‐alkanes was achieved in less than 3 minutes.  相似文献   

5.
快速气相色谱法分析石油饱和烃   总被引:6,自引:0,他引:6  
武杰  曹磊  李英明  端裕树 《色谱》2004,22(5):479-481
提出了一种快速分析原油和岩石抽提物中饱和烃组分的毛细管气相色谱(GC)方法。由于在该方法中采用了细内径毛细管柱,故饱和烃的GC分析周期由原来的80~90 min缩短至15 min,分析速度加快约5倍,大大提高了工作效率和仪器通量,使石油饱和烃得到了很好的分离分析。该方法符合中华人民共和国石油天然气行业标准SY/T5120-1997的要求。20万理论塔板数的细径柱的应用,可供石油中异构烷烃,尤其是甾烷、萜烷类的气相色谱/质谱(GC/MS)快速分析方法及芳烃的GC快速分析方法借鉴。  相似文献   

6.
Fast gas chromatography–mass spectrometry (GC–MS) has the potential to be a powerful tool in routine analytical laboratories by increasing sample throughput and improving laboratory efficiency. However, this potential has rarely been met in practice because other laboratory operations and sample preparation typically limit sample throughput, not the GC–MS analysis. The intent of this article is to critically review current approaches to fast analysis using GC–MS and to discuss practical considerations in addressing their advantages and disadvantages to meet particular application needs. The practical ways to speed the analytical process in GC and MS individually and in combination are presented, and the trade-offs and compromises in terms of sensitivity and/or selectivity are discussed. Also, the five main current approaches to fast GC–MS are described, which involve the use of: (1) short, microbore capillary GC columns; (2) fast temperature programming; (3) low-pressure GC–MS; (4) supersonic molecular beam for MS at high GC carrier gas flow; and (5) pressure-tunable GC–GC. Aspects of the different fast GC–MS approaches can be combined in some cases, and different mass analyzers may be used depending on the analytical needs. Thus, the capabilities and costs of quadrupole, ion trap, time-of-flight, and magnetic sector instruments are discussed with emphasis placed on speed. Furthermore, applications of fast GC–MS that appear in the literature are compiled and reviewed. At this time, the future usefulness of fast GC–MS depends to some extent upon improvement of existing approaches and commercialization of interesting new techniques, but moreover, a greater emphasis is needed to streamline overall laboratory operations and sample preparation procedures if fast GC–MS is to become implemented in routine applications.  相似文献   

7.
A fast method has been developed for the simultaneous determination of 52 stimulants and narcotics excreted unconjugated in urine by gas chromatography/mass spectrometry (GC/MS). The procedure involves the liquid/liquid extraction of the analytes from urine at strong alkaline pH and the injection of the extract into a GC/MS instrument with a fast GC column (10 m × 0.18 mm i.d.); the short column allows the complete separation of the 52 analytes in a chromatographic run of 8 min. The method has been fully validated giving lower limits of detection (LLODs) satisfactory for its application to antidoping analysis as well as to forensic toxicology. The repeatability of the concentrations and the retention times are good both for intra‐ and for inter‐day experiments (%CV of concentrations always lower than 15 and %CV of retention times lower than 0.6). In addition, the analytical bias is satisfactory (A% always >15%). The method proposed here would be particularly useful whenever there are time constraints and the analyses have to be completed in the shortest possible time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The application of vacuum GC has several advantages over pressurized GC. One of the key characteristics is that the optimal gas velocity is very high. Combined with short capillary columns of wide internal diameter, this results in short analysis times using standard GC‐MS equipment. To make vacuum GC possible using a GC‐MS system, a restriction must be positioned at the injection side of the column. This restriction is usually made of deactivated 0.1 mm i.d. fused‐silica tubing which is coupled to the analytical column. Such restrictions will work, but practical challenges are found in coupling, reducing dead volume and robustness. A new way of making restrictions is by incorporating the restriction into the injection port. Using well‐defined short pieces of fused silica with internal diameter of 0.025 mm, one can make a restriction using a Press‐Tight® type connector, and position this inside the injection port. By doing this, the restriction is very short and at high temperature all the time. Activity plays a minimal role, and also leaks will not be an issue as the coupling is in 100% inert gas. Data obtained using this concept is promising as vacuum GC becomes easier and more robust.  相似文献   

9.
A fast method of analysis for 20 representative pesticides was developed using low-pressure gas chromatography-mass spectrometry (LP-GC-MS). No special techniques for injection or detection with a common quadrupole GC-MS instrument were required to use this approach. The LP-GC-MS approach used an analytical column of 10 m x 0.53 mm I.D., 1 microm film thickness coupled with a 3 m x 0.15 mm I.D. restriction capillary at the inlet end. Thus, the conditions at the injector were similar to conventional GC methods, but sub-atmospheric pressure conditions occurred throughout the analytical column (MS provided the vacuum source). Optimal LP-GC-MS conditions were determined which achieved the fastest separation with the highest signal/noise ratio in MS detection (selected ion monitoring mode). Due to faster flow-rate, thicker film, and low pressure in the analytical column, this distinctive approach provided several benefits in the analysis of the representative pesticides versus a conventional GC-MS method, which included: (i) threefold gain in the speed of chromatographic analysis; (ii) substantially increased injection volume capacity in toluene; (iii) heightened peaks with 2 s peak widths for normal MS operation; (iv) reduced thermal degradation of thermally labile analytes, such as carbamates; and (v) due to larger sample loadability lower detection limits for compounds not limited by matrix interferences. The optimized LP-GC-MS conditions were evaluated in ruggedness testing experiments involving repetitive analyses of the 20 diverse pesticides fortified in a representative food extract (carrot), and the results were compared with the conventional GC-MS approach. The matrix interferences for the quantitation ions were worse for a few pesticides (acephate, methiocarb, dimethoate, and thiabendazole) in LP-GC-MS, but similar or better results were achieved for the 16 other analytes, and sample throughput was more than doubled with the approach.  相似文献   

10.
Fast gas chromatography/negative-ion chemical ionization mass spectrometric (GC/NICI-MS) assay combined with rapid and nonlaborious sample preparation is presented for the simultaneous determination of benzodiazepines and alpha-hydroxy metabolites, zaleplon and zopiclone in whole blood. The compounds were extracted from 100 microl of whole blood by simultaneous multitube, microscale liquid-liquid extraction (LLE) and derivatized by N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), without the need for the time-consuming concentration stage. In the analytical separation, various parameters of fast GC/NICI-MS were applied, e.g. the use of hydrogen as a GC carrier gas, a high carrier gas velocity, a small film thickness of the analytical column, fast MS data acquisition, fast temperature ramping, and high initial and final temperatures of GC column. Sensitive identification, screening and quantitation of 18 compounds of interest were achieved in chromatographic separation in only 4.40 min. Accurate and reproducible results were obtained by using five different and carefully selected deuterated analogues on the basis of the chemical properties of the target analytes. Nevertheless, for alpha-OH-midazolam, and for bromazepam and flunitrazepam at low concentrations, the results can be considered only semiquantitative on the basis of the validation data. The extraction efficiencies ranged from 74.3 to 105.7% and the limits of quantitation (LOQ) from 1 to 100 ng ml(-1). Rapid sample preparation and fast chromatographic separation allowed cost-efficient, reliable and high sample-throughput analyses with a low amount of manual work. The method was fully validated and accredited according to EN ISO/IEC 17025 standards and is applicable for sensitive, reliable and quantitative determination of benzodiazepines, zaleplon and zopiclone, e.g. in clinical and forensic toxicology.  相似文献   

11.
The use of larger volume injection with on‐column injection and fast GC commercial instrumentation was evaluated with the model mixture of n‐alkanes of a broad range of volatility (C10–C28). The presented configuration allows introduction of 40–80‐fold larger sample volumes without any distortion of peak shapes compared to “usual” fast GC set‐ups using narrow‐bore columns. A normal‐bore retention gap (1–5 m×0.32 mm ID) was coupled to a narrow‐bore (5 m×0.1 mm ID×0.4 μm film thickness) analytical column using a standard press‐fit connector. The connection was tight and reliable, and hence suitable for hydrogen as carrier gas. The effect of pre‐column and analytical column connector, injection volume, pre‐column length, column inlet pressure, and analyte volatility on peak shape, peak broadening, and focusing are discussed. The precision of chromatographic data measurements and peak capacity under optimised temperature programmed conditions for fast separations with large volume injection were found to be very good. The presented fast GC set‐up with on‐column injection extends the applicability of the technique to trace analysis.  相似文献   

12.
This study presents a very fast GC analysis applied for the baseline separation of isomeric tropane alkaloids extracted from the stem-bark of Schizanthus grahamii (Solanaceae). The work provided a challenging application where isothermal analysis in conjunction with very short narrow bore columns (3 m x 100 microm ID and 1.5 m x 50 microm ID) was particularly suited for the speeding up. Experimental parameters were used in the optimisation steps, including selection of stationary phase, temperature, internal column diameter and optimal practicable gas velocity. Some considerations about sample injection in fast isothermal analysis are also briefly presented. Finally, the investigated approach allowed a very fast baseline separation of four positional and configurational isomers in less than 9 s.  相似文献   

13.
An analytical procedure was developed for the fast screening of 16 diuretics (acetazolamide, althiazide, amiloride, bendroflumethiazide, bumetanide, canrenoic acid, chlorthalidone, chlorthiazide, clopamide, ethacrynic acid, furosemide, hydrochlorthiazide, hydroflumethiazide, indapamide, triamterene, trichlormethiazide) and a masking agent (probenecid) in human urine. The whole method involves three analytical steps, including (1) liquid/liquid extraction of the analytes from the matrix, (2) their reaction with methyl iodide at 70 degrees C for 2 h to form methyl derivatives, (3) analysis of the resulting mixture by fast gas chromatography/electron impact mass spectrometry (fast GC/EI-MS). The analytical method was validated by determining selectivity, linearity, accuracy, intra and inter assay precision, extraction efficiencies and signal to noise ratio (S/N) at the lowest calibration level (LCL) for all candidate analytes. The analytical performances of three extraction procedures and five combination of derivatization parameters were compared in order to probe the conditions for speeding up the sample preparation step. Limits of detection (LOD) were evaluated in both EI-MS and ECNI-MS (electron capture negative ionization mass spectrometry) modes, indicating better sensitivity for most of the analytes using the latter ionization technique. The use of short columns and high carrier gas velocity in fast GC/MS produced efficient separation of the analytes in less than 4 min, resulting in a drastic reduction of the analysis time, while a resolution comparable to that obtained from classic GC conditions is maintained. Fast quadrupole MS electronics allows high scan rates and effective data acquisition both in scan and selected ion monitoring modes.  相似文献   

14.
A fast GC–MS method was developed based on the use of GC–MS with Cold EI. This new method was applied for the analysis of the street drugs heroin and cocaine and it enabled 2 min chromatography time and 3 min full analysis cycle time. GC–MS with cold EI provides mass spectra with enhanced molecular ions that are library compatible (with increased identification probabilities) and allows the use of short, 5 m 0.25 mm ID columns, which facilitates fast GC–MS. A central ingredient of our unique cold EI-based fast GC–MS analysis method is the use of column flow programming from 1 up to 32 ml min?1 column flow rate. Column flow programming can reduce the analysis time by about a factor of two and unlike temperature programs of GC ovens the carrier gas flow rate can be raised and lowered very quickly (in a few seconds). The fast GC–MS with Cold EI method is demonstrated by the analysis of heroin in its street drug powder and cocaine on paper money and it can be applied for other drugs of abuse as a general fast drugs analysis method.  相似文献   

15.
One- and comprehensive two-dimensional gas chromatography were hyphenated with soft photoionization mass spectrometry. The characteristics of these two- and three-dimensional comprehensive separation techniques are discussed in detail. Using the innovative electron beam pumped excimer light source (EBEL) for single-photon ionization (SPI), organic molecules with ionization energies (E i ) of below 9.8 eV can be detected by a time-of-flight mass spectrometer (TOF-MS). SPI with 126 nm vacuum ultraviolet (VUV) photons enables the universal and soft ionization of organic molecules. SPI-TOF-MS hyphenated to one-dimensional gas chromatography results in a comprehensive two-dimensional separation method (GC×MS). To demonstrate this, diesel fuel was analyzed, and the resulting GC×MS chromatograms are discussed in depth. A three-dimensional separation method was also realized by combining comprehensive two-dimensional gas chromatography (GC×GC) with SPI-MS. In the resulting separation space, constituents originating from mineral oil diesel blended with biodiesel were dispersed along the two GC separation axes, while the molecular mass axis served as a third separation dimension.  相似文献   

16.
In this study, a procedure was developed to determine short-chain alkane monocarboxylic acids (SCMAs) in aqueous samples using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography (GC) coupled with mass spectrometry (MS). A Stabilwax-DA capillary column (30 m × 0.32-mm inner diameter, 0.50-μm film thickness) was used for GC separation and a 60-μm poly(ethylene glycol) fiber was used to isolate SCMAs from water and introduce them into the gas chromatograph. Parameters of HS-SPME, analyte desorption, and GC-MS analysis were selected and an analytical procedure was proposed. Limits of quantitation were on the order of about 0.2 mg L-1. As an example of the application of the procedure, SCAMs were determined in municipal wastewater at different steps of treatment.  相似文献   

17.
Summary Uncoated fused-silica capillary tubing has found widespread use in GC and GC/MS, e. g., in splitless and oncolumn injection, in the open-split interface used in GC/MS, and in hybrid fused-silica/glass capillary columns. As the uncoated capillary is usually more active than the coated one, it is very important to pay sufficient attention to the deactivation of the uncoated capillary. Otherwise the uncoated portion used as column inlet and/or outlet may become the main source of column activity and of analytical error. This case is especially serious under temperature-programmed runs. The effect of film thickness and temperature program on column activity is also discussed.  相似文献   

18.
The most commonly used military fog oil is characterized by comprehensive two-dimensional gas chromatography (GC×GC) coupled to either Flame Ionization Detection (FID) or Time-of-Flight Mass Spectrometric Detection (TOFMS) to advance the knowledge regarding the complete chemical makeup of this complex matrix. Two different GC×GC column sets were investigated, one employing a non-polar column combined with a shape selective column and the other an inverse column set (medium-polar/non-polar). The inverse set maximizes the use of the two-dimensional separation space and segregates aliphatic from aromatic fractions. The shape selective column best separates individual polycyclic aromatic hydrocarbons (PAHs) from the bulk oil. The results reveal that fog oil (FO) is composed mainly of aliphatic compounds ranging from C10 to C30, where naphthenes comprise the major fraction. Although many different species of aromatics are present, they constitute only a minor fraction in this oil, and no conjugated PAHs are found. The composition of chemically similar aliphatic constituents limits the analytical power of silica gel fractionation and GC–MS analysis to characterize FO. Among the aliphatic compounds identified are alkanes, cyclohexanes, hexahydroindanes, decalins, adamantanes, and bicyclohexane. The aromatic fraction is composed of alkylbenzene compounds, indanes, tetrahydronaphthalenes, partially hydrogenated PAHs, biphenyls, dibenzofurans and dibenzothiophenes. This work represents the best characterization of military fog oil to date. As the characterization process shows, information on such complex samples can only be parsed using a combination of sample preprocessing steps, multiple detection schemes, and an intelligent selection of column chemistries.  相似文献   

19.
Summary An on-line combination of liquid chromatography, gas chromatography and mass spectrometry has been realized by coupling a quadrupole mass spectrometer to an LC-GC apparatus. Liquid chromatography was used for sample pretreatment of oil samples of different origin. The appropriate LC fraction, containing polycyclic aromatic hydrocarbons, was transferred to the gas chromatograph using a loop-type interface. After solvent evaporation through the solvent vapour exit and subsequent GC separation, the compounds were introduced into the mass spectrometer for detection and identification. The GC column was connected to a short piece of deactivated fused silica that protruded into the ion source. The total analytical set-up allowed the direct analysis of oil samples after dilution in n-pentane without any sample clean-up. Detection limits are about 40 pg in the full scan mode and about 1 pg with selective ion monitoring, i.e. 20 ppb and 0.5 ppb respectively.  相似文献   

20.
The potential application of capillary column supercritical fluid chromatography (SFC) and SFC/mass spectrometry (SFC/MS) for the separation and analysis of mycotoxins of the trichothecene group was examined. Trichothecenes present significant analytical problems for both gas and liquid chromatography with a major difficulty for the latter being the lack of sufficiently sensitive and selective detectors. Supercritical carbon dioxide mobile phases at temperatures up to 100 degrees C were used with deactivated fused silica columns coated with crosslinked stationary phases. Separations were obtained under pressure ramped conditions using long (15 m) 50-micron i.d. columns for several trichothecenes (diacetoxyscirpenol, deoxynivalenol, and T-2 toxin) and related higher molecular weight macrocyclic (roridin and verrucarin) trichothecenes. In addition, new rapid pressure programming techniques with short (less than 2m) 25- to 50-micron i.d. capillary columns were used to obtain fast separations in as little as 1 min. SFC/MS with ammonia chemical ionization provided high selectivity and sensitive detection (with approximately 1-pg detection limits) for trichothecene mixtures. The extension to complex sample matrices is discussed and the application of selective MS/MS detection is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号