首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the nonlinear control problem for flexible air-breathing hypersonic vehicles (FAHVs). The coupling dynamics between flexible and rigid-body parts of FAHVs may cause degradation of control performance or high-frequency oscillations of control input and flexible state. In this paper, the flexible effects produced by the coupling are modeled as a kind of unknown disturbance and included in the new control-design model, for which a coupling observer is constructed to estimate these effects. Thus, a novel nonlinear composite control strategy, which combines a coupling-observer-based feedforward compensator and a dynamic-inversion-based feedback controller, is proposed to reject the flexible effects on pitch rate and track desired trajectories of velocity and flight-path angle. The stability of composite closed-loop system is analyzed by using the Lyapunov theory. Simulation results on a full nonlinear model of FAHVs demonstrate that the presented controller is more effective by comparison with the previous scheme.  相似文献   

2.
Shao  Xingling  Shi  Yi  Zhang  Wendong 《Nonlinear dynamics》2020,102(1):163-183

In this paper, an input-and-measurement event-triggered control scheme considering asymmetric partial-state constraints is proposed for flexible air-breathing hypersonic vehicles (FAHV) subject to lumped disturbances and limited resources. To realize a precise disturbance rejection with decreased communication burden in sensor-to-control channels, intermittent measurement-based extended state observers using switching threshold samplers are developed in altitude and velocity subsystems, while the quantitative relationship between the upper bounds of observation errors and the design parameters of switching triggering mechanism is derived. Subsequently, to ensure the angle of attack (AoA) well within the allowable operational region and simultaneously achieve a reference tracking with expected characteristic, asymmetric constraints imposed on partial states including AoA, velocity, and altitude are embedded in design process, while a one-to-one nonlinear mapping is designed to avoid the violation of state constraint of AoA without enforcing feasibility conditions on virtual control laws, and a modified prescribed performance control is constructed to govern the output constraints of velocity and altitude, releasing the demand on the precise knowledge of initial states. Next, to maintain the resources occupation (energy and communication in controller-to-actuator channel) at low levels and ensure a desirable tracking precision, robust control laws based on switching event-triggered mechanisms are designed for FAHV to circumvent Zeno phenomena and compensate for the sampling error induced by event-triggered conditions. The simulation results and comparisons validate the effectiveness of the proposed scheme.

  相似文献   

3.
Since most of the control strategies for air-breathing hypersonic vehicles (AHVs) concentrate on the control-oriented models built at/around a specific working point, it is somewhat hard to extend them to the broader flight envelop. Aiming at the above deficiency, this paper formulates the dynamics of AHVs as several sub-models, which switch to each other in accordance with the flight condition and make up of the control-oriented switched model (COSM). With the aid of the COSM, two adaptive tracking controllers are proposed for the purposes of velocity tracking and altitude tracking, sequentially. By utilizing neural networks and designing robust control laws, the possible changes on the force and moment coefficients in the COSM are successfully handled. The time-varying inertia parameters of AHVs are also considered at design level. It is worth emphasizing that while this strategy is developed based on a switched model, the resulting control algorithm is continuous with no connection to the switching signal. Analysis indicates that both velocity and altitude tracking errors remain small within the whole flight envelop, which is further confirmed by a simulation study.  相似文献   

4.
5.
An  Hao  Wu  Qianqian 《Nonlinear dynamics》2019,98(1):463-476
Nonlinear Dynamics - Focusing on the large-envelope control problem of air-breathing hypersonic vehicles (AHVs), this paper employs a switched control-oriented model (SCOM) to describe vehicle...  相似文献   

6.
李斯特  董明 《力学进展》2021,51(2):364-375
eN方法是物理意义明确的转捩预测方法之一,但它无法考虑边界层中的局部突变(如粗糙元、缝隙、台阶等)对转捩的影响.而后者在飞行器表面经常出现.近期发展的局部散射理论框架提供了该问题的有效解决途径.该理论框架从转捩的物理机理出发,定量刻画局部感受性和线性模态的局部散射两个机制,并用参数化的感受性系数和透射系数修正转捩判据....  相似文献   

7.
Guo  Zongyi  Guo  Jianguo  Chang  Jing  Zhou  Jun 《Nonlinear dynamics》2019,95(2):1009-1025
Nonlinear Dynamics - This paper investigates a novel control strategy of addressing coupling issue for attitude tracking control of hypersonic flight vehicle. By using a defined coupling effect...  相似文献   

8.
9.
In the present paper magnetohydrodynamic models are employed to investigate the stability of an inhomogeneous magnetic plasma with respect to perturbations in which the electric field may be regarded as a potential field (rot E 0). A hydrodynamic model, actually an extension of the well-known Chew-Goldberg er-Low model [1], is used to investigate motions transverse to a strong magnetic field in a collisionless plasma. The total viscous stress tensor is given; this includes, together with magnetic viscosity, the so-called inertial viscosity.Ordinary two-fluid hydrodynamics is used in the case of strong collisions=. It is shown that the collisional viscosity leads to flute-type instability in the case when, collisions being neglected, the flute mode is stabilized by a finite Larmor radius. A treatment is also given of the case when epithermal high-frequency oscillations (not leading immediately to anomalous diffusion) cause instability in the low-frequency (drift) oscillations in a manner similar to the collisional electron viscosity, leading to anomalous diffusion.Notation f particle distribution function - E electric field component - H0 magnetic field - density - V particle velocity - e charge - m, M electron and ion mass - i, e ion and electron cyclotron frequencies - viscous stress tensor - P pressure - ri Larmor radius - P pressure tensor - t time - frequency - T temperature - collision frequency - collision time - j current density - i, e ion and electron drift frequencies - kx, ky, kz wave-vector components - n0 particle density - g acceleration due to gravity. The authors are grateful to A. A. Galeev for valuable discussion.  相似文献   

10.
Summary An attempt is made at giving an appraisal of some representative rheological models of both differential and integral type, using the standard rheological measurements of six polymer melts. Experimental data obtained were the steady shear viscosity and the first normal stress difference by means of aWeissenberg rheogoniometer over the range of shear rates: 10–2 ~ 10 sec–1, and by means of aHan slit/capillary rheometer over the range of shear rates: 10 ~ 103 sec–1. Also measured by means of theWeissenberg rheogoniometer were the dynamic viscosity and dynamic elastic modulus over the range of frequencies: 0.3 × 10–2 ~ 3 × 102 sec–1. Rheological models chosen for an appraisal are theSpriggs 4-constant model, theMeister model, and theBogue model.It is found that the capability of the three models considered is about the same in their prediction of the rheological behavior of polymer melts in simple shearing flow. It is pointed out however that, due to the ensuing mathematical complexities, the usefulness of these models is limited to the study of flow problems associated with simple flow situations. Therefore, in analysing the complex flow situations often encountered with various polymer processings, the authors suggest use of the empirical models of the power-law type for both the viscosity and normal stress functions.With 11 figures, 4 schemas and 1 table  相似文献   

11.
12.
The flight control problem of a flexible air-breathing hypersonic vehicle is presented in the presence of input constraint and aerodynamic uncertainty. A control-oriented model, where aerodynamic uncertainty and the strong couplings between the engine and flight dynamics are included, is derived to reduce the complexity of controller design. The flexible dynamics are viewed as perturbations of the model. They are not taken into consideration at the level of control design, the influence of which is evaluated through simulation. The control-oriented model is decomposed into velocity subsystem and altitude subsystem, which are controlled separately. Then robust adaptive controller is developed for the velocity subsystem, while the controller which combines dynamic surface control and radial basis function neural network is designed for the altitude subsystem. The unknown nonlinear function is approximated by the radial basis function neural network. Minimal-learning parameter technique is utilized to estimate the maximum norm of ideal weight vectors instead of their elements to reduce the computational burden. To handle input constraints, additional systems are constructed to analyze their impact, and the states of the additional systems are employed at the level of control design and stability analysis. Besides, “explosion of terms” problem in the traditional backstepping control is circumvented using a first-order filter at each step. By means of Lyapunov stability theory, it is proved theoretically that the designed control law can assure that tracking error converges to an arbitrarily small neighborhood around zero. Simulations are performed to demonstrate the effectiveness of the presented control scheme in coping with input constraint and aerodynamic uncertainty.  相似文献   

13.
We present a methodology correlating the group velocity of guided plate waves to temperature in anisotropic silicon substrate. The model is developed through numerical solution and manipulation of the dispersion relations, while elastic constants and plate thickness are treated as functions of temperature. Analytical results demonstrate that adequate thermal resolution is provided by both the lowest-order antisymmetric and symmetric dispersive Lamb wave modes to serve as an effective diagnostic in a noncontact thermometry scheme applicable during rapid thermal processing of silicon waters. Validation is made through a combination of experimentation using laser-generated ultrasound in silicon wafers and analysis employing the Gabor wavelet transform to extract frequency- and temperature-dependent group velocities from the dispersive Lamb waves.  相似文献   

14.
The direct problem of hypersonic flow past a V-shaped wing with a shock wave detached from the leading edges is solved. The reduced normal force coefficient and the lift-drag (L/D) ratio are calculated for a configuration with a lower part in the shape of a V-wing and a streamwise upper part.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 145–154, May–June, 1993.  相似文献   

15.
16.
17.
The aerodynamic characteristics and distinctive features of the flow past hypersonic integral-layout flight vehicles with air-breathing engines intended for cruise flight in the atmosphere are experimentally investigated. The experiments were conducted on a simplified model designed with regard for the general principles of integration of vehicles of the class considered. The tests were performed in a wind tunnel over the Mach and Reynolds number ranges 0.6 ≤ M ≤ 4 and 6.3 × 106 ≤ Re ≤ 16 × 106, respectively. Balance testing was carried out, the pressure distributions over the vehicle surface were measured, and the flowfields on the model surface were photographed. The effects of mounting a nacelle and contouring the internal duct are considered. The effect of the corrections on the duct flow in the absence of jet modeling is estimated. The results obtained can be used as a basis for developing the aerodynamic configurations of integral-layout flight vehicles, for forming their thrust and aerodynamic parameters under full-scale flight conditions, and for testing computation methods.  相似文献   

18.
19.
A general review of existing strain-gage technologies as applied to orthotropic-composite materials is given. The specific topics addressed are gage-bonding procedures, transverse-sensitivity effects, errors due to gage misalignment, and temperature-compensation methods. The discussion is supplemented by numerical examples where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain-measurement errors exceeding 50 percent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号