首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Four families of conjugated molecules, containing between one and three phenyl rings and having both thiol (–SH) and isocyanide (–NC) end groups, have been synthesized and assembled as monolayers on flat Au(111) substrates. The conductance spectra G(V) for these molecular wires were systematically measured in UHV conditions using scanning tunneling microscope techniques. The measured conductance spectra for the molecules having thiol end groups are compared to a recent theory for molecular conduction. The favorable comparison indicates that the important properties influencing the conductance of short, conjugated molecular wires having thiol end groups and forming self-assembled monolayers on a Au(111) surface have been successfully identified. The isocyanide molecules reveal a shift in Fermi level of the molecule as a function of phenyl ring number that is opposite to that observed for the thiol-terminated molecules. The trends in molecular conductance determined from this systematic study are summarized and discussed and provide insight into the role played by bonding end groups in electronic conduction.  相似文献   

2.
We use non-equilibrium Green's function combined with density functional theory to investigate the electronic transport properties of two parallel molecular wires made of carbon atomic chains (triynes) capped with thiol. The results show that the transport behaviors clearly depend on the intermolecular distance when the two wires are separated by a relatively small distance. However, with increasing the wire spacing, the transport properties are dramatically affected by the molecule-electrode contact hollow-type and insensitive to the intermolecular distance. A quantum interference mechanism is proposed to interpret the contact hollow-type dependence of transport properties at large intermolecular distance.  相似文献   

3.
电场对分子线电子结构的影响   总被引:6,自引:2,他引:4  
从第一性原理出发,利用密度泛函理论计算了分子2-氨基-5-硝基-1,4-二乙炔基-4-苯硫醇基苯与金原子团形成的分子线的电子结构,从轨道、能级及吸附电子三个方面讨论了电场对分子线电子结构的影响.该工作将有利于未来纳米电子学器件的设计.  相似文献   

4.
DNA (Deoxyribonucleic acid) has recently caught the attention of chemists and physicists. A major reason for this interest is DNA’s potential use in nanoelectronic devices, both as a template for assembling nanocircuits and as an element of such circuits. However, the electronic properties of the DNA molecule remain very controversial. Charge-transfer reactions and conductivity measurements show a large variety of possible electronic behavior, ranging from Anderson and band-gap insulators to effective molecular wires and induced superconductors. In this review article, we summarize the wide-ranging experimental and theoretical results of charge transport in DNA. An itinerant electron model is suggested and the effect of the density of itinerant electrons on the conductivity of DNA is studied. Calculations show that a DNA molecule may show conductivity from insulating to metallic, which explains the controversial and profuse electric characteristics of DNA to some extent.   相似文献   

5.
分子线电子输运特性的第一性原理研究   总被引:1,自引:0,他引:1  
从第一性原理出发 ,利用密度泛函理论研究了SH -C8H16-SH分子和金表面的相互作用 ,并利用分子前线轨道理论和微扰理论定量地确定了该相互作用能常数 ,然后 ,利用弹性散射格林函数方法研究了该分子与金表面形成的分子线的伏 安特性 .研究结果表明 ,当含有硫氢官能团的有机分子化学吸附于金表面时 ,硫原子将与金原子形成以共价键为主的混和键 ,此时 ,扩展的分子轨道使分子线的电导呈现出欧姆特性 ,而对于局域的分子轨道 ,电子的输运只能通过隧道效应来实现 .对分子线伏 安特性的计算结果显示 ,在零偏压附近 ,存在一个电流禁区 ,随着偏压的增加 ,分子线的电导呈现出平台特征 .  相似文献   

6.
The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov–de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.  相似文献   

7.
We report on the characterization of sub-monolayers of pyrrole adsorbed on Ga-rich GaAs(001) surfaces. The interfaces were characterized by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS) and reflectance anisotropy spectroscopy (RAS) in a spectral range between 1.5 and 8 eV. The adsorption of pyrrole on Ga-rich GaAs(001) modifies the RAS spectrum of the clean GaAs surface significantly at the surface transitions at 2.2 and 3.5 eV indicating a chemisorption of the molecules. By the help of transients at these surface transitions during the adsorption process, we were able to prepare different molecular coverages from a sub-monolayer up to a complete molecular layer. The different coverages of pyrrole were imaged by STM and electronically characterized by STS. The measurements reveal that the adsorbed molecules electronically insulate the surface and indicate the formation of new interface states around −3.5 and +4.2 eV. The RAS measurements in the UV region show new anisotropies in the spectral range of the optical transitions of the adsorbed pyrrole molecules. Our measurements demonstrate the potential of optical and electronic spectroscopy methods for the characterization of atomically thin molecular layers on semiconductor surfaces allowing a direct access to the properties of single adsorbed molecules.  相似文献   

8.
We report the use of single quantum dot structures as tips on a scanning tunneling microscope (STM). A single quantum dot structure with a diameter of less than 200 nm and a height of 2 μm was fabricated by reactive ion etching. This dot was placed on a 40 μm-high mesa and mounted on the tip of a STM. The topography of large structures such as quantum wires or gold test substrates is clearly resolved with such a tip. To check the transport properties of the tip, quantum dot arrays were fabricated on resonant tunneling double barrier structures using the same process parameters. Conventional tunneling spectroscopy clearly resolved the 0D states in our samples. Using a metal substrate as second electrode such STM tips can be used to perform high resolution energy spectroscopy on single dots and free standing wire structures.  相似文献   

9.
Electrical transport measurements on single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We review transport measurements on single-walled carbon nanotubes contacted by metal electrodes. At room temperature some devices show transistor action similar to that of p-channel field effect transistors, while others behave as gate-voltage independent wires. At low temperatures transport is usually dominated by Coulomb blockade. In this regime the quantum eigenstates of the finite-length tubes can be studied. At higher temperatures power law behaviour is observed for the temperature and bias dependence of the conductance. This is consistent with tunneling into a one-dimensional Luttinger liquid in a nanotube. We also discuss recent developments in contacting nanotubes which should soon allow study of their intrinsic transport properties. Received: 17 May 1999 / Accepted 18 May 1999 / Published online: 4 August 1999  相似文献   

10.
Transport spectroscopy reveals the microscopic features of few-electron quantum dots which justify the nameartificial atoms. New physics evolve when two quantum dots are coupled by a tunneling barrier. We study, both theoretically and experimentally, the tunneling spectroscopy on a double quantum dot. A detailed lineshape analysis of the conductance resonances proves that off-resonant coherent interdot tunneling governs transport through this system, while tunneling into the double quantum dot occurs resonantly. This coherent interdot tunneling witnesses the evolution of a delocalized electronic state which can be compared to a valence electron of thisartificial molecule.  相似文献   

11.
An intrinsic magnetic topological insulator(TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi_2Te_4, by alternate growth of a Bi_2Te_3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.  相似文献   

12.
We study the electronic transport properties of mutually connected wires with loops in a “spaghetti”—like morphology by transfer matrix scaling methods. We obtain the conductance of the system and show the existence of an Anderson metal-insulator transition. Our results are discussed in connection with recent experiments in conjugated polymers.  相似文献   

13.
14.
In this Letter we report the observation, by scanning tunneling microscopy, of a Mott metal to insulator transition at the surface of 1T-TaSe2. Our spectroscopic data compare considerably well with previous angle-resolved photoemission spectroscopy measurements and confirm the presence of a large hysteresis related to a first order process. The local character of the tunneling spectroscopy technique allows a direct visualization of the surface symmetry and provides spectroscopic measurements on the defect-free region of the sample. It follows that the electronic localization is driven purely by the enhancement of the charge density wave amplitude which drives a bandwidth controlled metal-insulator transition.  相似文献   

15.
We present the first measurements of the differential conductance of Co wires grown on top of Cu(110)-p(2 × 3)N (Cu3N). We apply scanning tunneling spectroscopy (STS) in constant height and constant current mode to access the electronic density of states of the sample over a wide energy range. All measurements have been performed at 7 K. Our study reveals that the differential conductance of the Co wires is very similar to that of Cu3N. Spectra of the differential conductance measured on the Co wires and on Cu3N reveal that both systems exhibit the same characteristic features near + 1.8V and + 3.5 V.  相似文献   

16.
The elastic scattering Green function method has been developed to describe the I–V characteristics of molecular wires. The molecular electronic structure and the interaction between the molecule and the gold surface are two key factors for the charge transport properties of molecular wires in the formulas. Anab initio calculation at the hybrid density functional theory level is carried out to obtain the electronic structure of 4-4′-dimercaptodibenzene molecule. The frontier orbit theory and the perturbation theory are employed to determine the constant of the interaction energy between molecule and surface quantitatively. The numerical results show that the bonding between the sulfur atom and the gold atoms corresponds mainly to the covalent bond. Some molecular orbits are extended over molecule and gold cluster that certainly give channels for the charge transport, other molecular orbits are localized and the charge transport can take place by tunnel mechanism. At zero bias region, there exists a current gap. With the increasing bias, the conductance of the wire takes a shape of plateaus.  相似文献   

17.
We report scanning tunneling microscope measurements showing a substantial decrease of the current, almost to zero, on the Si(111)-(7x7) reconstruction in the near-to-contact region under low bias conditions. First principles simulations for the tip-sample interaction and transport calculations show that this effect is driven by the substantial local modification of the atomic and electronic structure of the surface. The chemical reactivity of the adatom dangling bond states that dominate the electronic density of states close to the Fermi level and their spatial localization result in a strong modification of the electronic current.  相似文献   

18.
李巧华  张振华  刘新海  邱明  丁开和 《物理学报》2009,58(10):7204-7210
基于分子线耦合到电极的构成特点,采用简化的非对称多势垒连续隧穿模型模拟复合分子器件偏压下的电子隧穿过程,推导电子透射谱的解析表达式,同时计算垒宽、垒距、垒高、电子有效质量和所加偏压等参数与透射系数的关系,结果发现:当电子的能量为某些值时,出现明显的共振隧穿,且透射系数对这些参数的变化非常敏感,这表明可以通过适当的控制方式(如改变复合分子组成、构型等)来修改分子电子器件的输运性质. 关键词: 分子器件 非对称势垒模型 电子透射谱 共振隧穿  相似文献   

19.
The dimensionality of electronic states determines a number of physical phenomena such as phase transitions, transport, or superconductivity. Employing scanning tunneling microscopy combined with angle-resolved photoemission spectroscopy we demonstrate how the dimensionality of electronic states can be continuously tuned from three to two dimensions. This is achieved by adsorption of nanowires on surfaces of layered crystals without changing the chemical composition of the material. Exemplary results for Rb nanowires on TiTe2 are discussed with the help of electronic structure calculations.  相似文献   

20.
In this work, low temperature scanning tunneling microscopy (STM) studies on quantum wires are reported, which were fabricated by laser holography and wet chemical etching. Inverted heterostructures with thin and highly doped cap layers were used as substrates in order to keep the total tunneling barrier as small as possible. Current—voltage curves were measured on the wires and in the depleted areas between them. Between the wires, significant current is only observed for electrons which tunnel from the GaAs valence band into the STM tip, whereas symmetric curren voltage curves are observed on the wires. This behavior is ascribed to the influence of surface depletion and thus, a comparison of current imaging spectroscopy data taken at 300 K and in liquid helium directly yields the edge depletion width of the quantum wires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号