首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a study of the formation of tungsten silicide at the W-Si interface, induced by multipulse (up to 300 shots) XeCl excimer-laser irradiation of W(150 nm)/Si and W(500 nm)/Si samples. Laser fluences ranging from 0.6 to 1.8 J/cm2 were used. After laser treatment the samples were examined by different diagnostic techniques: Rutherford backscattering spectrometry, X-ray scattering, resistometry, and surface profilometry. Numerical computations of the evolution and depth profiles of the temperature in the samples as a consequence of a single 30 ns laser pulse were performed as well. The results indicate that it is possible to obtain a tungsten silicide layer at the W-Si interface at quite low fluences. The layer thickness increases with the number of laser pulses. Complete reaction of the 150 nm thick W film with silicon was obtained at the fluence of 1.2 J/cm2 between 30 and 100 laser pulses and at 1.5 J/cm2 after 30 laser pulses. The sheet resistance of these silicides was 5–10 . At the used fluences for the 500 nm thick W film only the onset of silicide synthesis at the W-Si interface was observed.  相似文献   

2.
Titanium films 120 nm thick deposited on single-crystalline silicon (c-Si) as well as poly-Si/SiO2/c-Si substrates were subjected to Nd: glass laser irradiation. Laser fluences of 1,1.5, and 2 J/cm2 were used at the pulse duration of 30 ns. From RBS analysis it follows that on c-Si substrate titanium suicide is formed using one pulse of 1.5 J/cm2 energy density. On the substrate with surface overlayers lower fluence (1 J/cm2) was sufficient. Under these conditions the sheet resistance of the samples decreased from the initial value 5 / to 2–3 /. The smaller threshold density of energy for suicide formation in Ti/polySi/SiO2/c-Si structure is shown to be a consequence of the SiO2 underlayer, which is a poorer heat conductor than silicon. The experimental results of the suicide synthesis are in semi-quantitative accordance with the numerical computations of the temperature vs time evolution and depth temperature distribution in our samples.  相似文献   

3.
Polycrystalline SiC layers were synthesized through nanosecond pulse heating of thin carbon films deposited on single-crystalline silicon wafers. The samples were submitted to electron beam irradiation (25 keV, 50 ns) at various current densities in vacuum (10–4mbar) and to XeCl excimer laser pulses (308 nm, 15ns) in air. Rutherford backscattering spectrometry (RBS) showed that in the e-beam annealed samples mixing of the elements at the interface starts at current densities of about 1200 A/cm2. The mixed layer thickness increases almost linearly with current density. From the RBS spectra a composition of the intermixed layers close to the SiC compound was deduced. Transmission electron microscopy (TEM) and electron diffraction studies clearly evidenced the formation of SiC polycrystals. Using the XeCl excimer laser, intermixing of the deposited C film with the Si substrate was observed after a single 0.3 J/cm2 pulse. Further analysis evidenced the formation of SiC nanocrystals, embedded in a diamond film.  相似文献   

4.
The relevant results obtained in the field of laser synthesis of metal silicides are reviewed. Particular emphasis is given to the work using a pulsed laser in the nanosecond regime and to the results obtained in our laboratory. Formation of stable and metastable compounds, their structure and the surface morphology of the irradiated materials are discussed. The reaction kinetics is investigated through a comparison of the experimental results with the heat flow and temperature calculations.  相似文献   

5.
Interaction of a nanosecond transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm, with tungsten-titanium thin film (190 nm) deposited on silicon of n-type (1 0 0) orientation, was studied. Multi-pulse irradiation was performed in air atmosphere with laser energy densities in the range 24-49 J/cm2. The energy absorbed from the laser beam was mainly converted to thermal energy, which generated a series of effects. The following morphological changes were observed: (i) partial ablation/exfoliation of the WTi thin film, (ii) partial modification of the silicon substrate with formation of polygonal grains, (iii) appearance of hydrodynamic features including nano-globules. Torch-like plumes started appearing in front of the target after several laser pulses.  相似文献   

6.
Micromachining of CuInSe2 (CIS)-based photovoltaic devices with short and ultrashort laser pulses has been investigated. Therefore, ablation thresholds and ablation rates of ZnO, Mo and CuInSe2 thin films have been measured for irradiation with nanosecond laser pulses of ultraviolet and visible light and subpicosecond laser pulses of a Ti:sapphire laser. The experimental results were compared to the theoretical evaluation of the samples heat regime. In addition, the cells photo-electrical properties were measured before and after laser machining. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses were employed to characterise the laser-induced ablation channels. Using nanosecond laser pulses, two phenomena were found to limit the laser-machining process. Residues of Mo that were projected onto the walls of the ablation channel and the metallization of the CuInSe2 semiconductor close to the channel lead to a shunt. The latter causes the decrease of the photovoltaic efficiency. As a consequence of these limiting effects, only subpicosecond laser pulses allowed the selective or complete ablation of the thin layers without a relevant change of the photo-electrical properties.  相似文献   

7.
Samples formed of a thin metal film deposited on silicon single crystal were annealed with electron and laser (ruby and excimer) pulses over a wide range of fluences. From a comparison of the experimental results with the temperature profiles of the irradiated samples, it turns out that suicide formation starts when the metal/silicon interface reaches the lowest eutectic temperature of the binary metal/silicon system. The growth rate of reacted layers is of the order of 1 m/s.  相似文献   

8.
Surfaces of single-crystal silicon wafers are amorphized by high-dose phosphorous ion implantation. These surfaces of the wafers, immersed in concentrated KOH, are laser-chemically etched by pulse irradiation of a ruby laser. Simultaneously, the remaining parts of the amorphous layer are annealed. The time dependence of the etching process enhanced during pulse irradiation is recorded and analysed. Reasons for the etching rates which differ between amorphous and single-crystal silicon are given on the basis of experimental and numerical results.  相似文献   

9.
Infrared multiphoton decomposition of monosilane in the presence of methyl methacrylate results in the formation of gaseous methane, acetylene, butenes and carbon monoxide along with a solid polymer whose chemical mechanism of formation is discussed in line of the poly(dimethylsiloxane) structure inferred from ESCA and IR spectral analysis.  相似文献   

10.
- and -polarized radiation. When the yield is related to the incident photon flux, desorption cross sections of (1.9±0.3)×10-17 cm2 and (3.3±0.5)×10-17 cm2 for - and -polarized light, respectively, are deduced. In order to assess the importance of substrate excitation the optical constants of NiO have been determined for the photon energy employed. When the desorption yield is then related to the photon flux absorbed in the NiO film, much larger cross sections are obtained, and an even larger effectiveness of -polarized light. For a direct optical excitation of charge transfer states the implications for the symmetry character of the states involved are discussed. It is concluded that excitations to A′′ states are preferred. Received: 21 October 1998  相似文献   

11.
The successful synthesis of ethylamine with a cw tunable CO2 laser is reported. This action occurs at normal pressure (5.32×104 Pa) and temperature (<100° C). No catalyst is used. The experiment shows a high directionality of this reaction. No other product except ethylamine is yielded. A possible mechanism for this reaction is discussed.  相似文献   

12.
The laser initiated formation of Cd-deposits from dimethylcadmium (DMCd) on quartz substrates has been investigated at various wavelengths between 337 and 676 nm. In this range substrate and DMCd are both transparent. The deposition mechanism is initiated by multiphoton dissociation of DMCd molecules adsorbed at the glass substrate and continues by pyrolysis of DMCd molecules at the laser-heated metallic deposit. Metal structures with a resolution below 1 m have been obtained.  相似文献   

13.
A linear relationship is found between the34S isotopic enrichment factor per pulse and the focal distance of the lens used to concentrate the laser beam. From this, one derives a threshold power of 26 MW/cm2 for photodissociation, a mean absorption of 100 photons of 10.59 μm wavelength per32SF6 dissociation, and a dependence of the enrichment factor on the 3/2 power of the laser pulse energy.  相似文献   

14.
Laser ablation is a technology widely used in many applications. Understanding in detail the mechanisms that lead to ablation remains a formidable challenge because of the complexity of the processes taking place, the variety of species involved, and the range of length and time scales covered. Atomic-level experimental information is difficult to obtain and must be augmented by theory. In this article, we briefly review the progresses that we have accomplished using a simple two-dimensional molecular-dynamics model, insisting on the importance of considering the thermodynamics of the evolution of the systems in order to understand ablation. Through the identification of the thermodynamic pathways followed by the material after irradiation, our model has provided significant insights on the physical mechanisms leading to ablation. It has been demonstrated in particular that these depend strongly on the fluence, and are actually determined by the effective amount of energy received within different regions of the target. Further, internal or external factors, such as inertial confinement, play a key role in determining the route to ablation - and thus the types and sizes of particles ejected - by constraining the thermodynamical evolution of the system. We have established that, for ultrashort pulses in strongly absorbing materials, ablation proceeds by either spallation, phase explosion or fragmentation; the latter, we demonstrate, is the most important mechanism. For longer pulses, ablation may also proceed by trivial fragmentation.  相似文献   

15.
Hydrodynamic simulations are used to evaluate the potential of ultrashort laser pulses to localize energy at metallic surfaces, in our case aluminum. The emphasis is put on the dynamic sequence of laser energy deposition steps during the electron-ion nonequilibrium stage and the subsequent matter transformation phases. The simulations indicate correlated optical and thermodynamical states associated to specific electronic collisional mechanisms. The timescales of energy deposition deliver a guideline for using relevant relaxation times to improve the energy coupling into the material. We focus on a class of pump-probe experiments which investigate energy storage and particle emission from solids under ultrafast laser irradiation. Moreover, we have used our model to explain the experimentally observed optimization of energy coupling by tailoring temporal laser intensity envelopes and its subsequent influence on the ablation rate and on the composition of ablation products. Potential control for nanoparticle generation is discussed.  相似文献   

16.
Selective infrared multiphoton dissociation of13CF3Cl induced by CO2 laser pulses adjusted on = 1071.9 cm–1 has been studied in the energy rangeE between 0.5 and 2 J per laser pulse or fluence range between 5 and 25 J per cm2, and in the pressure range between 0.10 and 60 Torr. The effect of these parameters on the isotopic selectivity of the dissociation gives information on the rotational relaxation constants. As for the dissociation probabilities, they vary exponentially withE –1. The applicability of such an Arrhenius-type relation is discussed and semi-quantitatively justified.  相似文献   

17.
Large area excimer laser induced deposition of titanium on fused silica from TiCl4 is studied with an emphasis on process modeling. We show that several TiCl4 monolayers can be adsorbed if the surface is adequately prepared and that the Ti thin film growth occurs through the photodecomposition of this adsorbed TiCl4 layer. We propose two growth regimes. During an initiation phase, up to 3 nm in thickness, the adsorbed layer is photochemically decomposed giving a growth rate of 0.015 nm/pulse. In a second phase, the deposition rate increases to between 2 and 7 nm/pulse due to the laser heating of the preceding photochemically deposited titanium film. Between consecutive pulses, TiCl4 molecules primarily from the adsorbed layer diffuse to the reaction zone leading to a new adsorbed layer ready to be transformed to solid titanium.  相似文献   

18.
Monte-Carlo study of reactive ion-beam assisted film growth   总被引:1,自引:0,他引:1  
A Monte-Carlo computer program which is composed of ion implantation simulation and deposition calculation is described. It is applied to study TiN film growth by reactive ion-beam assisted deposition in a N2 gas environment. The relationship between film composition and nitrogen partial pressure in the processing chamber is established. The influence of ion energy, atomic arrival rate ratio and ion species on the thickness of the film is studied. We also investigated the intermixing at the interface region between the film and substrate. The calculated data are compared with experimental results.The work was supported by National Hi-Tech Projects  相似文献   

19.
The photoablation of polystyrene (PS) and polymethylmethacrylate (PMMA) was studied in real-time during the uv laser pulse at 193 nm. The transmission and total reflection of thin polymer layers on quartz glass substrates was measured time-resolved. From the results for the strongly absorbing PS it can be concluded that the emission of material starts within the first few nanoseconds of the laser pulse. Photoablation of PMMA, which is a relatively weak absorber at 193 nm, is accompanied by strong modifications of the transmission by the first several ten laser pulses.  相似文献   

20.
Two groups of Mo/Si films were deposited on surface of Si(1 0 0) crystal. The first group of the samples was prepared by both ion beam assisted deposition (IBAD) and metal vapor vacuum arc (MEVVA) ion implantation technologies under temperatures from 200 to 400 °C. The deposited species of IBAD were Mo and Si, and different sputtering Ar ion densities were selected. The mixed Mo/Si films were implanted by Mo ion with energy of 94 keV, and fluence of Mo ion was 5 × 1016 ions/cm2. The second group of the samples was prepared only by IBAD under the same test temperature range. The Mo/Si samples were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), sheet resistance, nanohardness, and modulus of the Mo/Si films were also measured. For the Mo/Si films implanted with Mo ion, XRD results indicate that phase of the Mo/Si films prepared at 400 and 300 °C was pure MoSi2. Sheet resistance of the Mo/Si films implanted with Mo ion was less than that of the Mo/Si films prepared without ion implantation. Nanohardness and modulus of the Mo/Si films were obviously affected by test parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号