首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A simple and highly sensitive method called stir bar sorptive extraction (SBSE) and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan) in river water samples, is described. A stir bar coated with polydimethylsiloxane (PDMS) is added to a 10mL water sample and stirring is carried out for 120min at room temperature (25 degrees C) in a vial. Then, the PDMS stir bar is subjected to TD-GC-MS. The detection limit of triclosan is 5ngL(-1) (ppt). The method shows linearity over the calibration range (0.02-20mugL(-1)) and the correlation coefficient is higher than 0.997 for triclosan standard solution. The recovery of triclosan in river water samples ranges from 91.9 to 108.3% (RSD: 4.0-7.0%). This simple, accurate, sensitive, and selective analytical method may be used in the determination of trace amounts of triclosan in river water samples.  相似文献   

2.
A novel method for the trace analysis of 17beta-estradiol (E2) in river water sample was developed, which involved stir bar sorptive extraction (SBSE) with in situ acylation (first derivatization) and thermal desorption (TD) with quartz wool assisted (QWA) in tube silylation (second derivatization), followed by gas chromatography-mass spectrometry (GC-MS), and is called the "dual derivatization method." The optimum conditions for SBSE with in situ acylation, such as the volume of acetic acid anhydride and the extraction time, were investigated. In addition, the optimum conditions for TD with QWA in tube silylation, such as the volume of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and the TD temperature and hold time, were investigated as well. The detection limit (S/N = 3) and the quantitation limit (S/N>10) of E2 in the river water sample were 0.5 and 2 pg ml(-1) (ppt), respectively, by the dual derivatization method. In addition, the detection limit was 0.1 pg ml(-1) by using dual derivatization method with multi-shot mode. The calibration curve for E2 was linear in the range of 0.002-10 ng ml(-1) with correlation coefficients >0.999. The average recoveries of E2 (n = 6) at the concentrations of 0.05 and 1.0 ng ml(-1) from the river water sample were 93.1 (RSD: 1.4%) and 98.4% (RSD: 0.8%), respectively, with correction using the added surrogate standard, 17beta-estradiol-(13)C(4). This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of E2 in water samples.  相似文献   

3.
A method for the simultaneous measurement of trace amounts of phenolic xenoestrogens, such as 2,4-dichlorophenol (2,4-DCP), 4-tert-butyl-phenol (BP), 4-tert-octylphenol (OP), 4-nonylphenol (NP), pentachlorophenol (PCP) and bisphenol A (BPA), in water samples was developed using stir bar sorptive extraction (SBSE) with in situ derivatization followed by thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) analysis. The conditions for derivatization with acetic acid anhydride were investigated. A polydimethylsiloxane (PDMS)-coated stir bar and derivatization reagents were added to 10 ml of water sample and stirring was commenced for 10-180 min at room temperature (25 degrees C) in a headspace vial. Then, the extract was analyzed by TD-GC-MS. The optimum time for SBSE with in situ derivatization was 90 min. The detection limits of 2,4-DCP, BP, OP, NP, PCP and BPA were 2, 1, 0.5, 5, 2 and 2 pg ml(-1), respectively. The method showed good linearity over the concentration ranges of 10, 5, 2, 20, 10 and 10-1000 pg ml(-1) for 2,4-DCP, BP, OP, NP, PCP and BPA, respectively, and the correlation coefficients were higher than 0.99. The average recoveries of those compounds in river water samples were equal to or higher than 93.9% (R.S.D. <7.2%) with correction using the added surrogate standards. This simple, accurate, sensitive and selective method can be used in the determination of trace amounts of phenolic xenoestrogens in river water samples.  相似文献   

4.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

5.
A simple and highly sensitive method called thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of 4-nonylphenol (NP) and 4-tert.-octylphenol (OP) in water samples, is described. NP and OP in samples are extracted from water samples and concentrated by the stir bar sorptive extraction (SBSE) technique. A stir bar coated with polydimethylsiloxane (PDMS) is added to a 2.0 ml water sample and stirring is carried out for 60 min at room temperature (25 °C) in a headspace vial. Then the extract is high sensitively analyzed by TD-GC-MS without any derivatization step. The optimum SBSE conditions are realized at an extraction time of 60 min. The detection limits are 0.02 ng ml−1 for NP and 0.002 ng ml−1 for OP. The method shows good linearity over the concentration range of 0.1-10 ng ml−1 for NP and 0.01-10 ng ml−1 for OP, and the correlation coefficients are higher than 0.999. The average recoveries of NP and OP are higher than 97% (R.S.D.: 3.6-6.2%) with correction using the added surrogate standards, 4-(1-methyl) octylphenol-d5 and deuterium 4-tert.-octylphenol. This simple, accurate, sensitive and selective analytical method may be used in the determination of trace amounts of NP and OP in tap and river water samples.  相似文献   

6.
A method for the trace analysis of methylmercury (MeHg) and Hg(II) in water sample was developed, which involved stir bar sorptive extraction (SBSE) with in situ alkylation with sodium tetraethylborate and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS). The limits of quantification of MeHg and Hg(II) are 20 and 10 ng L−1 (Hg), respectively. The method shows good linearity and the correlation coefficients are higher than 0.999. The average recoveries of MeHg and Hg(II) in tap or river water sample are 102.1-104.3% (R.S.D.: 7.0-8.9%) and 105.3-106.2% (R.S.D.: 7.4-8.5%), respectively. This simple, accurate, sensitive, and selective analytical method may be used in the determination of trace amounts of MeHg and Hg(II) in tap and river water samples.  相似文献   

7.
A method for the determination of ultra-trace amounts of organochlorine pesticides (OCPs) in river water was developed by using stir bar sorptive extraction (SBSE) followed by thermal desorption and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry (SBSE-TD-GC×GC-HRTOF-MS). SBSE conditions such as extraction time profiles, phase ratio (β: sample volume/polydimethylsiloxane (PDMS) volume), and modifier addition, were examined. Fifty milli-liter sample including 10% acetone was extracted for 3 h using stir bars with a length of 20 mm and coated with a 0.5 mm layer of PDMS (PDMS volume, 47 μL). The stir bar was thermally desorbed and subsequently analyzed by GC×GC-HRTOF-MS. The method showed good linearity over the concentration range from 50 to 1000 pg L(-1) or 2000 pg L(-1) for all analytes, and the correlation coefficients (r(2)) were greater than 0.9903 (except for β-HCH, r(2)=0.9870). The limit of detection (LOD) ranged from 10 to 44 pg L(-1). The method was successfully applied to the determination of 16 OCPs at pg L(-1) to ng L(-1) in river water. The results agree fairly well with the values obtained by a conventional liquid-liquid extraction (LLE)-GC-HRMS (selected ion monitoring: SIM) method using large sample volume (20 L). The method also allows screening of non-target compounds, e.g. pesticides and their degradation products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) and metabolites in the same river water sample, by using full spectrum acquisition with accurate mass in GC×GC.  相似文献   

8.
刘芃岩  高丽  申杰  刘微  蔡立鹏 《色谱》2010,28(5):517-520
建立了固相微萃取(SPME)-气相色谱法(GC)分析环境水样中痕量邻苯二甲酸酯类化合物(PAEs)的方法。选用100 μm聚二甲基硅烷(PDMS)萃取纤维,在磁力搅拌条件下,对水样中的PAEs萃取富集60 min,然后直接注入GC进样口,在250 ℃温度下解吸4 min后进行分析测定,13种PAEs能得到充分提取和分离。方法的重现性(以相对标准偏差(RSD)计为0.2%~9.7%,检出限为0.02~0.83 μg/L。将本方法应用于白洋淀水样中PAEs的分析检测发现,样品中邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)检出率相对较高。对水样进行两个浓度水平(2.5 μg/L和5.0 μg/L)的加标试验,加标回收率为75.3%~111.0%,RSD为2.1%~8.0%(n=3),能够满足环境水样中痕量PAEs的测定要求。  相似文献   

9.
A method for the simultaneous measurement of benzophenone (BP) sunscreen compounds, its derivatives 2,4-dihydroxybenzophenone (BP-1), 2-hydroxy-4-methoxybenzophenone (BP-3), 2-hydroxy-4-methoxy-4'-methylbenzophenone (BP-10), 2-hydroxybenzophenone (2OH-BP), 3-hydroxybenzophenone (3OH-BP) and 4-hydroxybenzophenone (4OH-BP), in water samples was developed using stir bar sorptive extraction (SBSE) with in situ derivatization followed by thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS). The detection limit is 0.5-2 ng L(-1) (ppt) for the seven BPs. The method shows good linearity and the correlation coefficients are equal to or higher than 0.990 for all the analyte. The average recoveries of BPs range from 102.0 to 128.1% (RSD<15.4%, n=6). Trace amounts of BPs in river water samples were determined by the present method.  相似文献   

10.
A method for the analysis of trace polycyclic aromatic hydrocarbons(PAHs) in aqueous samples has been established by polydimethylsiloxane(PDMS) rod aided stir bar sorptive extraction(SBSE). The homemade PDMS rod has a size of 30 mm?3 mm o.d. with a volume of ca. 200 ?L, stable in thermal desorption process. The enriched PAHs by the PDMS rod were released in a homemade thermal desorption system coupled with gas chromatography. Experimental parameters for extraction of six PAHs were optimized including extraction time, pH, ionic strength and temperature of solution. The procedure has good recoveries of 80.0%―100.3% and very low limits of detection of 4.0―33 ng/L. PAHs in rain and river water were analyzed by this method.  相似文献   

11.
In the present study, a stir bar coated with hydrophilic polymer based on poly(N-vinylpyrrolidone-co-divinylbenzene) was prepared for the sorptive extraction of polar compounds. The main parameters affecting the polymerisation of the coating were investigated.The new stir bar was applied successfully in stir bar sorptive extraction with liquid desorption followed by liquid chromatography–mass spectrometry in tandem with a triple quadrupole for the determination of a group of polar pharmaceuticals and personal care products (PPCPs) in environmental water matrices. Different variables affecting extraction and desorption such as agitation speed, temperature, ionic strength and extraction time were optimised. The results showed that the stir bar is able to enrich the selected analytes effectively.The developed method was applied to determine a group of PPCPs in different complex environmental samples, including river, effluent and influent waste water.  相似文献   

12.
A fast method for detection of tuberculostearic acid (TBSA) in sputum samples is described. The samples, obtained from patients with known or suspected pulmonary tuberculosis, were decontaminated and concentrated before being analyzed by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Prior to extraction, the mycobacterial lipids were hydrolyzed and then derivatized with ethyl chloroformate to increase the sorption of the compounds by the polydimethylsiloxane (PDMS) stir bar coating. The limit of detection (LOD) is 0.2 ng ml(-1). Four sputum samples that were classified by direct microscopy as smear-positive or negative were analyzed by GC-MS. TBSA was detected at concentrations ranging from 0.47 to 2.3 ng ml(-1). The method is sufficiently sensitive to detect TBSA directly in clinical samples without the need to culture the organisms.  相似文献   

13.
A method for the determination of trace amounts of off-flavor compounds including 2-methylisoborneol, geosmin and 2,4,6-trichloroanisole in drinking water was developed using the stir bar sorptive extraction technique followed by thermal desorption-GC-MS analysis. The extraction conditions such as extraction mode, salt addition, extraction temperature, sample volume and extraction time were examined. Water samples (20, 40 and 60 ml) were extracted for 60-240 min at room temperature (25 degrees C) using stir bars with a length of 10 mm and coated with a 500 microm layer of polydimethylsiloxane. The extract was analyzed by thermal desorption-GC-MS in the selected ion monitoring mode. The method showed good linearity over the concentration range from 0.1 or 0.2 or 0.5 to 100 ng l(-1) for all the target analytes, and the correlation coefficients were greater than 0.9987. The detection limits ranged from 0.022 to 0.16 ng l(-1). The recoveries (89-109%) and precision (RSD: 0.80-3.7%) of the method were examined by analyzing raw water and tap water samples fortified at the 1 ng l(-1) level. The method was successfully applied to low-level samples (raw water and tap water).  相似文献   

14.
Stir bar sorptive extraction (SBSE) in combination with thermodesorption-gas chromatography-mass spectrometry (TD-GC-MS) was applied for the determination of eight insect repellents and synergists in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 20 mL of water sample with 4 g NaCl and stirred at 1000 rpm for 180 min. Then, the stir bar was subjected to TD-GC-MS. SBSE parameters (ionic strength, presence of organic solvent and time) were optimised. Blank contamination and carryover problems were also studied. The method affords detection limits between 0.5 and 30 ng/L, except for dimethyl phthalate (DMP) (150 ng/L) due to blank contamination problems. It shows good linearity with correlation coefficients over 0.997 and reproducibility (RSD) below 20%. The extraction efficiencies were between 29% for DMP and 80% for di-n-propyl isocinchomeronate (R-326). The feasibility of the method was tested by analysing real samples such as lake water, river water and wastewater.  相似文献   

15.
Stir Bar Sorptive Extraction (SBSE), a recently introduced solventless extraction technique, was applied for the enrichment of benzoic acid in lemon flavored beverages. The stir bar is covered with 50 mg polydimethylsiloxane (PDMS) and the extraction mechanism is similar to that of solid phase micro extraction (SPME) but the enrichment factor is ca. 100 times higher. SBSE is followed by thermal desorption (TD)‐capillary gas chromatography (CGC)‐mass spectroscopy (MS). Calibration graphs for benzoic acid were linear from 1 to 1000 ppm for water and diluted soft drinks and the repeatability (n = 6) was less than 5% RSD.  相似文献   

16.
Stir bar sorptive extraction (SBSE) in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was applied for the determination of 9 UV filters in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 20 mL of water sample at pH 2 (10% MeOH) and stirred at 1000 rpm for 180 min. Then, the stir bar was subjected to TD-GC-MS. The desorption conditions (desorption temperature and desorption time) and SBSE parameters (ionic strength, pH, presence of organic solvent and time) were optimised using a full factorial design and a Box-Behnken design, respectively. The method shows good linearity (correlation coefficients >0.994) and reproducibility (RSD<16%). The extraction efficiencies were above 63% for all the compounds. Detection limits were between 0.2 and 63 ng/L. The developed method offers the ability to detect several UV filters at ultra-low concentration levels with only 20 mL of sample volume. The effectiveness of the method was tested by analysing real samples such as lake water, river water and treated wastewater. The application of the method allowed reporting the levels of UV filters in environmental water samples.  相似文献   

17.
A new method that involves liquid phase microextraction (LPME) with in situ derivatization and gas chromatography-mass spectrometry (GC-MS) is described for the determination of trace amounts of bisphenol A (BPA) in river water samples. The LPME conditions, such as the type of extraction solvent and the extraction time, are investigated. Then, the extract is directly injected into GC-MS. The detection limit and the quantification limit of BPA in river water sample are 2 and 10pgml(-1) (ppt), respectively. The calibration curve for BPA is linear with a correlation coefficient of >0.999 in the range of 10-10,000pgml(-1). The average recoveries of BPA in river water samples spiked with 100 and 1000pgml(-1) BPA are 104.1 (RSD: 8.9%) and 98.3 (RSD: 3.2%), respectively, with correction using the added surrogate standard, bisphenol A-(13)C(12). This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of BPA in liquid samples.  相似文献   

18.
An optimised method using stir bar sorptive extraction (SBSE) and a thermal desorption‐GC‐electron capture detector (GC‐ECD) for the determination of short‐chain chlorinated paraffins from water samples was developed. Recoveries near to 100% were obtained by using 20 mm×0.5 mm (length×film thickness) PDMS commercial stir bars from 200 mL spiked water samples and 20% methanol addition with an extraction period of 24 h. Method sensitivity, linearity and precision were evaluated for surface water and wastewater spiked samples. A LOD of 0.03 and 0.04 μg/L was calculated for surface and wastewater, respectively. The precision of the method given as an RSD was below 20% for both matrices. The developed method was applied for the analysis of two real samples from a contaminated river and a wastewater treatment plant. Results were in accordance with those obtained using a previously developed method based on solid phase microextraction (SPME).  相似文献   

19.
固相萃取柱上衍生气相色谱-质谱法测定水中烷基酚   总被引:7,自引:0,他引:7  
以烷基酚(APs)主要降解产物辛基酚(4-t-OP)、壬基酚(4-n-NP)为研究对象,建立了固相萃取(SPE)柱上衍生化、气相色谱-质谱(GC-MS)法测定水中APs的分析方法。以C18柱为固相萃取柱、N,O-(三甲基硅)三氟乙酰胺(BSTFA)为硅烷化试剂,设计五因素四水平正交实验L16(45),对衍生化影响因素、衍生化溶剂、衍生化时间以及SPE主要影响因素pH值、盐度和洗脱剂进行优化;在优化条件下,方法的回收率(高于80%)和重现性(RSD低于10%)结果令人满意,4-t-OP和4-n-NP的仪器检出限分别为3.35ng/L和6.38ng/L。采用建立的方法,回收率略高于传统的SPE萃取衍生法,具有有机溶剂用量少,方法简单快速、灵敏度高的特点,适用于河水和海水中痕量烷基酚的快速测定。  相似文献   

20.
A method for mercury analysis and speciation in drinking water was developed, which involved stir bar sorptive extraction (SBSE) with in situ propyl derivatization and thermal desorption (TD)-GC-MS. Ten millilitre of tap water or bottled water was used. After a stir bar, pH adjustment agent and derivatization reagent were added, SBSE was performed. Then, the stir bar was subjected to TD-GC-MS. The detection limits were 0.01 ng mL(-1) (ethylmercury; EtHg), 0.02 ng mL(-1) (methylmercury; MeHg), and 0.2 ng mL(-1) (Hg(II) and diethylmercury (DiEtHg)). The method showed good linearity and correlation coefficients. The average recoveries of mercury species (n=5) in water samples spiked with 0.5, 2.0, and 6.0 ng mL(-1) mercury species were 93.1-131.1% (RSD<11.5%), 90.1-106.4% (RSD<7.8%), and 94.2-109.6% (RSD<8.8%), respectively. The method enables the precise determination of standards and can be applied to the determination of mercury species in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号