首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology , where S g is an orientable two-surface of genus g>1. We show how grafting along simple closed geodesics λ is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S g .We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ satisfying θ2 = 0.  相似文献   

2.
3.
As a starting point, we state some relevant geometrical properties enjoyed by the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds. Those properties are generalised to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon common to all co-moving observers. This structure is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M, encompassing both the cosmological de Sitter background and a large class of other FRW spacetimes, the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables constructed on the cosmological horizon. There is exactly one pure quasifree state λ on which fulfills a suitable energy-positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ induces a preferred physically meaningful quantum state λ M for the quantum theory in the bulk. If M admits a timelike Killing generator preserving , then the associated self-adjoint generator in the GNS representation of λ M has positive spectrum (i.e., energy). Moreover λ M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λ M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λ M in more general spacetimes are presented. Dedicated to Professor Klaus Fredenhagen on the occasion of his 60th birthday.  相似文献   

4.
Wilson observables for 2 + 1 quantum gravity with negative cosmological constant, when the spatial manifold is a torus, exhibit several novel features: signed area phases relate the observables assigned to homotopic loops, and their commutators describe loop intersections, with properties that are not yet fully understood. We describe progress in our study of this bracket, which can be interpreted as a q-deformed Goldman bracket, and provide a geometrical interpretation in terms of a quantum version of Pick’s formula for the area of a polygon with integer vertices.  相似文献   

5.
6.
In this paper, we investigate dynamics of the modified loop quantum cosmology models using dynamical systems methods. Modifications considered come from the choice of the different field strength operator and result in different forms of the effective Hamiltonian. Such an ambiguity of the choice of this expression from some class of functions is allowed in the framework of loop quantization. Our main goal is to show how such modifications can influence the bouncing universe scenario in the loop quantum cosmology. In effective models considered we classify all evolutional paths for all admissible initial conditions. The dynamics is reduced to the form of a dynamical system of the Newtonian type on a two-dimensional phase plane. These models are equivalent dynamically to the FRW models with the decaying effective cosmological term parameterized by the canonical variable p (or by the scale factor a). We demonstrate that the evolutional scenario depends on the geometrical constant parameter Λ as well as the model parameter n. We find that for the positive cosmological constant there is a class of oscillating models without the initial and final singularities. The new phenomenon is the appearance of curvature singularities for the finite values of the scale factor, but we find that for the positive cosmological constant these singularities can be avoided. The values of the parameter n and the cosmological constant differentiate asymptotic states of the evolution. For the positive cosmological constant the evolution begins at the asymptotic state in the past represented by the de Sitter contracting (deS) spacetime or the static Einstein universe H = 0 or H =  − ∞ state and reaches the de Sitter expanding state (deS+), the state H = 0 or H =  + ∞ state. In the case of the negative cosmological constant we obtain the past and future asymptotic states as the Einstein static universes.  相似文献   

7.
Extremely compact stars (ECS) (having radius R < 3GM/c 2) contain captured null geodesics. Certain part of neutrinos produced in their interior will be trapped, influencing thus their neutrino luminosity and thermal evolution. The trapping effect has been previously investigated for the internal Schwarzschild spacetimes with the uniform distribution of energy density. Here, we extend our earlier study considering the influence of the cosmological constant Λ on the trapping phenomena. Our model for the interior of ECS is based on the internal Schwarzschild-(anti-)de Sitter (S(a)dS) spacetimes with uniform distribution of energy density matched to the external vacuum S(a)dS spacetime with the same cosmological constant. Assuming uniform and isotropic distribution of local neutrino emissivity we determine behavior of the trapping coefficients, i.e., “global” one representing influence on the neutrino luminosity and “local” one representing influence on the cooling process. We demonstrate that the repulsive (attractive) cosmological constant has tendency to enhance (damp) the trapping phenomena.  相似文献   

8.
Varun Sahni 《Pramana》2000,55(1-2):43-52
I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or A-term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe. A flat accelerating universe is strongly favoured by combining supernovae observations with observations of CMB anisotropies on degree scales which give the ‘best-fit’ values ΘA ⋍ 0.7 and Θ m ⋍ 0.3. A time dependent cosmological A-term can be generated by scalar field models with exponential and power law potentials. Some of these models can alleviate the ‘fine tuning’ problem which faces the cosmological constant.  相似文献   

9.
The extremely large value of the cosmological constant that is characteristic of particle physics and the inflation of the early universe are inherently interconnected. One can construct a superpotential that, after consideration for the leading effects due to supergravity, produces a flat potential of inflaton with a constant density of energy V = Λ4. The introduction of relatively small quantum loop corrections to the parameters of this superpotential naturally leads to a dynamical instability taking the form of an inflationary regime of relaxation of the cosmological constant. This pattern is phenomenologically consistent with observational data at Λ ∼ 1016 GeV.  相似文献   

10.
We have investigated general Bianchi type I cosmological models which containing a perfect fluid and dark energy with time varying G and Λ that have been presented. The perfect fluid is taken to be one obeying the equation of state parameter, i.e., p=ωρ; whereas the dark energy density is considered to be either modified polytropic or the Chaplygin gas. Cosmological models admitting both power-law which is explored in the presence of perfect fluid and dark energy too. We reconstruct gravitational parameter G, cosmological term Λ, critical density ρ c , density parameter Ω, cosmological constant density parameter Ω Λ and deceleration parameter q for different equation of state. The present study will examine non-linear EOS with a general nonlinear term in the energy density.  相似文献   

11.
Varun Sahni 《Pramana》1999,53(6):937-944
I briefly review the observational evidence for a small cosmological constant at the present epoch. This evidence mainly comes from high redshift observations of Type 1a supernovae, which, when combined with CMB observations strongly support a flat Universe with Ω m + ΩA ⋍ 1. Theoretically a cosmological constant can arise from zero point vacuum fluctuations. In addition ultra-light scalar fields could also give rise to a Universe which is accelerating driven by a time dependent Λ-term induced by the scalar field potential. Finally a Λ dominated Universe also finds support from observations of galaxy clustering and the age of the Universe.  相似文献   

12.
We investigate the possibility of inducing the cosmological constant from extra dimensions by embedding our four-dimensional Riemannian space-time into a five-dimensional Weyl integrable space. Following the approach of the space-time-matter theory we show that when we go down from five to four dimensions, the Weyl field may contribute both to the induced energy-tensor as well as to the cosmological constant Λ, or more generally, it may generate a time-dependent cosmological parameter Λ(t). As an application, we construct a simple cosmological model in which Λ(t) has some interesting properties.  相似文献   

13.
Within our thick brane approach previously used to obtain the cosmological evolution equations on a thick brane embedded in a five-dimensional Schwarzschild Anti-de Sitter spacetime it is explicitly shown that the consistency of these equations with the energy conservation equation requires that, in general, the thickness of the brane evolves in time. This varying brane thickness entails the possibility that both Newton’s gravitational constant G and the effective cosmological constant Λ4 are time dependent.  相似文献   

14.
15.
It has been suggested that the cosmological constant is a variable dynamical quantity. A class of solution has been presented for the spherically symmetric space time describing wormholes by assuming the erstwhile cosmological constant Λ to be a space variable scalar, viz., Λ = Λ (r) . It is shown that the averaged null energy condition (ANEC) violating exotic matter can be made arbitrarily small.  相似文献   

16.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

17.
Bianchi type I cosmological models with time-varying cosmological constant Λ and bulk viscous fluid are investigated. Cosmic matter is chosen to obey a barotropic equation of state. Exact solutions of Einstein’s field equations are obtained assuming the volume expansion θ proportional to the eigen values of shear tensor σ ij . Physical and kinematical properties of the models are discussed considering bulk viscosity to be a power function of matter density.  相似文献   

18.
I review the problem of dark energy focussing on cosmological constant as the candidate and discuss what it tells us regarding the nature of gravity. Section 1 briefly overviews the currently popular “concordance cosmology” and summarizes the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as a candidate and emphasizes why no other approach really solves the conceptual problems usually attributed to cosmological constant. Section 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract certain key ingredients which must be present in any viable solution. In the conventional approach, the equations of motion for matter fields are invariant under the shift of the matter Lagrangian by a constant while gravity breaks this symmetry. I argue that until the gravity is made to respect this symmetry, one cannot obtain a satisfactory solution to the cosmological constant problem. Hence cosmological constant problem essentially has to do with our understanding of the nature of gravity. Section 3 discusses such an alternative perspective on gravity in which the gravitational interaction—described in terms of a metric on a smooth spacetime—is an emergent, long wavelength phenomenon, and can be described in terms of an effective theory using an action associated with normalized vectors in the spacetime. This action is explicitly invariant under the shift of the matter energy momentum tensor T ab T ab + Λ gab and any bulk cosmological constant can be gauged away. Extremizing this action leads to an equation determining the background geometry which gives Einstein’s theory at the lowest order with Lanczos–Lovelock type corrections. In this approach, the observed value of the cosmological constant has to arise from the energy fluctuations of degrees of freedom located in the boundary of a spacetime region.  相似文献   

19.
In the Kaluza-Klein model with a cosmological constant Λ and a flux, the external spacetime of the created universe from aS s × S ns seed instanton can be identified in quantum cosmology. One can also show that in the internal space theeffective cosmological constant is most probably zero.  相似文献   

20.
We consider static spherically symmetric solutions of the Einstein equations with cosmological constant Λ coupled to the SU(2)-Yang–Mills equations that are smooth at the origin r=0. We prove that all such solutions have a radius r c at which the solution in Schwarzschild coordinates becomes singular. However, for any positive integer N, there exists a small positive Λ N such that whenever 0<Λ<Λ N , there exist at least N distinct solutions for which the singularity is only a coordinate singularity and the solution can be extended to rr c . Received: 5 June 2000 / Accepted: 13 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号