首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Ab initio HF and Cl calculations were performed to determine the equilibrium geometry of SiH?5 and SiH?3, the barrier for internal rotation (SiH?5) and inversion (SiH?3) and the stability of SiH?5 and further to study the effect of electron correlation on reaction energies. The gaussian-type basis included d and f functions on Si and a p set on II. The D3h structures of SiH?5 is lower in energy than the C4v structure by 2.9(3.2) kcal/mol (corresponding HF results in parentheses). SiH?3 has C3v structure, the inner-ion barrier computed is 26.2 (27.3) kcal/mol. SiH?5 turns out to be stable with respect to SiH4 + H? by 20.3 (13.8) kcal/mol, but it is unstable with respect to SiH?3 ← H2 by 6.3 (5.6) kcal/mol. These results show that electron correlation has a small effect on barriers of inversion (SiH?3) or pseudorotation (SiH?5), but may have a pronounced effect on reaction energies even if all systems involved have closed shells. The correlation energy contributions are analyzed in terms of intrapair and interpair terms in order to get a better understanding of the influence of correlation on reaction and activation energies.  相似文献   

2.
The homogeneous gas-phase decomposition kinetics of methylsilane and methylsilane-d3 have been investigated by the comparative-rate-single-pulse shock-tube technique at total pressures of 4700 torr in the 1125–1250 K temperature range. Three primary processes occur: CH3SiH3 → CH3SiH + H2 (1), CH3SiH3 → CH4 + SiH2 (2), and CH3SiH3 → CH2 = SiH2 + H2 (3). The high-pressure rate constants for the primary processes in CH3SiH3 obtained by RRKM calculations are log (k1 + k3) (s?1) = 15.2 - 64,780 Cal/θ and log k2 (s?) = 14.50 - 67,600 → 2800 Cal/θ. For CH3SiD3 these same rate constants are log k1 (s?) = 14.99 - 64,700 cal/θ log k2 (s?) = 14.68 – 66,700 → 2000 cal/θ, and log k3 (s?) = 14.3 ? 64,700 cal/θ.  相似文献   

3.
Koopmans' theorem ionization potentials have been calculated for a series of hydrides, methyls, and silyls HnX, (CH3)nX, and (SiH3)nX (X = F, Cl, n = 1; X = O, S, n = 2; X = N, P, n = 3), together with some mixed species (MH3)nXH3-n (X = N, P; M = C, Si) using ab initio SCF methods. The calculated values give excellent agreement with experimental values without the inclusion of d functions. For the chlorides, HCl, CH3Cl, and SiH3Cl, the values vary rather little over a wide range of basis sets, and are unaffected by the inclusion of d functions.  相似文献   

4.
Hartree-Fock 6-31G(d) structures for the neutral, positive ion, and negative ion bimolecular complexes of NH3 with the first- and second-row hydrides AHn (AHn = NH3, OH2, FH, PH3, SH2, and ClH) have been determined. All of the stable neutral complexes except (NH3)2, the positive ion complexes with NH3 as the proton acceptor, and the negative ion complexes containing first-row anions exhibit conventional hydrogen bonded structures with essentially linear hydrogen bonds and directed lone pairs of electrons. The positive ion complex NH4+ …? OH2 has the dipole moment vector of H2O instead of a lone pair directed along the intermolecular line, while the complexes of NH4+ with SH2, FH, and ClH have structures intermediate between the lone-pair directed and dipole directed forms. The negative ion complexes containing second-row anions have nonlinear hydrogen bonds. The addition of diffuse functions on nonhydrogen atoms to the valence double-split plus polarization 6-31G(d,p) basis set usually decreases the computed stabilization energies of these complexes. Splitting d polarization functions usually destabilizes these complexes, whereas splitting p polarization functions either has no effect or leads to stabilization. The overall effect of augmenting the 6-31G(d,p) basis set with diffuse functions on nonhydrogen atoms and two sets of polarization functions is to lower computed stabilization energies. Electron correlation stabilizes all of these complexes. The second-order Møller–Plesset correlation term is the largest term and always has a stabilizing effect, whereas the third and fourth-order terms are smaller and often of opposite sign. The recommended level of theory for computing the stabilization energies of these complexes is MP2/6-31+G(2d,2p), although MP2/6-31+G(d,p) is appropriate for the negative ion complexes.  相似文献   

5.
《Chemical physics letters》1986,127(4):367-373
Ab initio calculations have been performed on model molecular clusters simulating bridging fluorine configurations in fluorinated amorphous silicon. Optimized geometries, total energies and vibrational frequencies have been computed for (SiH3)2F+ clusters with the terminal SiH3 groups eclipsed or staggered. The stable minimum on the potential energy surface corresponds to a linear, but very flexible, Si-F-Si bridging configuration. (SiH3)2F+ appears to be stable with respect to unimolecular decomposition. The calculated vibrational frequencies include a strongly infrared-active antisymmetric stretch mode at 740 cm−1, similar to the metastable “Bband” experimentally observed at 750 cm−1 in the ion-implanted samples. These results are compared with calculated geometries and vibrational frequencies of SiH3F, SiH3F+, SiH2F+ and Si2H5F.  相似文献   

6.
The Raman spectra of gaseous and liquid (SiH3)2NCH3 and (SiH3)2NCD3 have been recorded to within 10 cm?1 of the exciting line. The IR spectra of (SiH3)2NCH3 and (SiH3)2NCD3 have been recorded from 80 cm?1 to 3800 cm?1 in the gaseous state, and from 80 cm?1 to 450 cm?1 in the solid state. A vibrational assignment has been made, and from the low-frequency vibrational data, an upper limit of 3.3 kcal mol?1 was calculated for the barrier to internal rotation of the silyi groups, whereas a barrier of ~450 cal was calculated for internal rotation of the methyl group. It is concluded that there exists a significantly strong dπpπ interaction in methyldisilylamine.  相似文献   

7.
The multiple‐channel reactions SiH3 + SiH3CH3 → products and SiH3 + SiH2(CH3)2 → products are investigated by direct dynamics method. The minimum energy path (MEP) is calculated at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD method. The rate constants for individual reaction channels are calculated by the improved canonical variational transition state theory (ICVT) with small‐curvature tunneling (SCT) correction over the temperature range of 200–2400 K. The theoretical three‐parameter expression k1(T) = 2.39 × 10−23T4.01exp(−2768.72/T) and k2(T) = 9.67 × 10−27T4.92exp(−2165.15/T) (in unit of cm3 molecule−1 s−1) are given. Our calculations indicate that hydrogen abstraction channel from SiH group is the major channel because of the smaller barrier height among eight channels considered. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

8.
Hydrogen atoms and SiHx (x = 1–3) radicals coexist during the chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a‐Si:H) thin films for Si‐solar cell fabrication, a technology necessitated recently by the need for energy and material conservation. The kinetics and mechanisms for H‐atom reactions with SiHx radicals and the thermal decomposition of their intermediates have been investigated by using a high high‐level ab initio molecular‐orbital CCSD (Coupled Cluster with Single and Double)(T)/CBS (complete basis set extrapolation) method. These reactions occurring primarily by association producing excited intermediates, 1SiH2, 3SiH2, SiH3, and SiH4, with no intrinsic barriers were computed to have 75.6, 55.0, 68.5, and 90.2 kcal/mol association energies for x = 1–3, respectively, based on the computed heats of formation of these radicals. The excited intermediates can further fragment by H2 elimination with 62.5, 44.3, 47.5, and 56.7 kcal/mol barriers giving 1Si, 3Si, SiH, and 1SiH2 from the above respective intermediates. The predicted heats of reaction and enthalpies of formation of the radicals at 0 K, including the latter evaluated by the isodesmic reactions, SiHx + CH4 = SiH4 + CHx, are in good agreement with available experimental data within reported errors. Furthermore, the rate constants for the forward and unimolecular reactions have been predicted with tunneling corrections using transition state theory (for direct abstraction) and variational Rice–Ramsperger–Kassel–Marcus theory (for association/decomposition) by solving the master equation covering the P,T‐conditions commonly employed used in industrial CVD processes. The predicted results compare well experimental and/or computational data available in the literature. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Ab initio calculations at 6–31G**, 6–31++G**, and MP2/6–31G** levels were performed on disilyl–fluoronium, (SiH3)2F+, with the SiH3 group eclipsed or staggered. Optimized geometries, total energies, dipole moments, atomic charges, electronic density, and vibrational frequencies were computed. The results were compared with calculated structural parameters and vibrational frequencies of H3SiF, H2SiF+, H2SiF?, and H4SiF+ ions. The basis-set effects were studied. Several thermochemistry parameters—ZPE, thermal energy, rotational constants, and entropies—were also calculated. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The reactions F + H2 → HF + H, HF → H + F, F → F+ + e? and F + e? → F? were used as simple test cases to assess the additivity of basis set effects on reaction energetics computed at the MP4 level. The 6-31G and 6-311G basis sets were augmented with 1, 2, and 3 sets of polarization functions, higher angular momentum polarization functions, and diffuse functions (27 basis sets from 6-31Gd, p) to 6-31 ++ G(3df, 3pd) and likewise for the 6-311G series). For both series substantial nonadditivity was found between diffuse functions on the heavy atom and multiple polarization functions (e.g., 6-31 + G(3d, 3p) vs. 6-31 + G(d, p) and 6-31G(3d, 3p)). For the 6-311G series there is an extra nonadditivity between d functions on hydrogen and multiple polarization functions. Provided that these interactions are taken into account, the remaining basis set effects are additive to within ±0.5 kcal/mol for the reactions considered. Large basis set MP4 calculations can also be estimated to within ±0.5 kcal/mol using MP2 calculations, est. EMP4(6-31 ++ G(3df, 3pd)) ≈ EMP4(6-31G(d, p)) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31G(d, p)) or EMP4(6-31 + G(d, p) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31 + G(d, p)) and likewise for the 6-311G series.  相似文献   

11.
Summary Amino derivatives of linear and branched tri- und tetrasilanes R2N-H2Si(SiH2)SiH2-NR2 H3SiSiHNR2SiHNR2SiH3, R2N-H2SiSiH2SiH2SiH2-NR2 und (R2N-H2Si)2SiHSiH(SiH2-NR2)2 with R = Et, SiMe3 are formed by the reaction of the corresponding bromooligosilanes with suitable amines or alkali metal amides. Product distribution and yields are strongly influenced by the nucleophilicity of the amino reagent and by the structure of the SiSi-backbone. The structures proposed for the aminopolysilanes thus prepared are proved by29Si-,1H-NMR-and MS-investigations.
  相似文献   

12.
By applying the powerful direct optimization technique of conjugate gradients as adapted for the optimization of an open shell energy functional, a uniformly balanced (15s 10p) Gaussian basis set was obtained for the silicon atom. The quality of this basis set, as defined in terms of “exponent forces” or energy gradient |g|, is compatible with the quality of suitably chosen (10s 5p) carbon and (5s) hydrogen basis sets. Contractions better than double zeta were determined for all three bases of Si, C, and H. Using the primitive and contracted bases, ab initio SCF MO calculations were carried out on molecules of SiH4, CH4, and H2. Some of the computed results obtained for H2C = SiH2 are also included as an illustration for organo-silicon compounds.  相似文献   

13.
Treatment of 1,2‐C6H4(SiH3)(SiH3) ( 1 ) with Pt(dmpe)(PEt3)2 (dmpe=Me2PCH2CH2PMe2) in the ratio of 1:1 leads to the complex {1,2‐C6H4(SiH2)(SiH2)}PtII (dmpe) ( 2 ), which can react with proton organic reagent bearing hydroxy group with low steric hindrance to form a tetra‐alkoxy substituted silyl platinum(II) compound ( 3 ). Compounds 2 and 3 are the very rare examples of silyl transition‐metal complexes derived from this chelating hydrosilane ligand. To the best of our knowledge, there are only 6 examples of silyl metal complexes prepared from this ligand with such structural features registered in the Cambridge Structural Database, among them, only one silyl platinum(II) compound is presented. The structures of complexes 2 and 3 were unambiguously determined by multinuclear NMR spectroscopic studies and single crystal X‐ray analysis.  相似文献   

14.
The Raman spectra (3500 to 30 cm–1) of allylsilane, CH2CHCH2SiH3, in the liquid with quantitative depolarization ratios and solid states and the infrared spectra (3500 to 30 cm–1) of the gas and solid have been recorded. Similar data have also been recorded for the Si-d3 isotopomer. Additionally, the mid-infrared spectra of the normal sample dissolved in liquified xenon as a function of temperature (–100 to –50°C) have been recorded. All these data indicate there is a single conformer, the gauche rotamer, in all three physical states. Utilizing the Si-H stretching frequencies from the infrared spectrum of the gaseous CH2CHCH2SiD2H isotopomer, the three Si-H bond distances (r 0) are calculated to be 1.484 Å for the gauche conformer. The other r 0 parameters are estimated from the previously reported rotational constants. The fundamental frequencies for the asymmetric (78 cm–1) and SiH3 (137 cm–1) torsions were obtained from sum and difference bands with the SiH3 stretches. From the SiH3 torsional frequency the barrier to internal rotation is calculated to have a value of 731 cm–1 (8.74 kJ/mol). The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules.  相似文献   

15.
Ab initio calculations at the 4-31G level are carried out on the species SiHn (n = 0 to 4) and the corresponding ions. SiH+4 is found to distort from Td to D2d. C2v, and C3v, with the latter structure being the lowest in energy by 11 kcal/mole. Consistent with experimental mass spectroscopy, SiH+4 is found to be much less stable to dissociation than CH+4.  相似文献   

16.
Local (LSD ) and nonlocal (NLSD ) spin density calculations using different exchangecorrelation functionals have been performed to determine equilibrium geometries, harmonic vibrational frequencies (ωe), ionization potentials (IP ), electron affinities (EA ), dipole moments (μ), and singlet-triplet energy gaps (Δ EST) of SiH2, GeH2, and SnH2. Geometrical structures as well as vibrational frequencies are in agreement with the available experimental data and compare favorably with the most sophisticated postHartree-Fock computations performed until now. Both computed IPS (9.15 and 9.25 eV for SiH2 and GeH2, respectively) and EA of SiH2 (1.17 eV) compare favorably with experimental data (9.17, 9.21, and 1.2 eV). Accurate values are obtained also for singlet-triplet energy gaps. We report for the first time the electron affinities of all neutral systems and the spectroscopic constants of the cations and anions. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
A new method for the modification of a silylamino ligand has been developed through mono and dual C(sp3)−H/Si−H cross-dehydrocoupling with silanes. The reaction of [LY{η2-(C,N)-CH2Si(Me2)NSiMe3}] (L=bis(2,6-diisopropylphenyl)-β-diketiminato, L′ ( 1L ′); L=tris(3,5-dimethylpyrazolyl)borate, TpMe2 ( 1TpMe2 )) with 2 equivalents of PhSiH3 in toluene gave the complexes [LY{η2-(C,N)-C(SiH2Ph)2Si(Me2)NSiMe3}] (L=L′ ( 2L’ ); L=TpMe2 ( 2TpMe2 )). Moreover, 1TpMe2 reacted with the secondary silanes Ph2SiH2 and Et2SiH2 to afford the corresponding mono C−H activation products [TpMe2Y{η2-(C,N)-CH(SiHR2)Si(Me2)NSiMe3}] (R=Ph ( 4 b ); R=Et ( 4 c )). The equimolar reaction of 1TpMe2 with PhSiH3 also produced the mono C−H activation product 4 a ([TpMe2Y{η2-(C,N)-CH(SiH2Ph)Si(Me2)NSiMe3}(thf)]). A study of their reactivity showed that 4 a facilely reacted with 2 equivalents of benzothiazole by an unusual 1,1-addition of the C=N bond of the benzothiazolyl unit to the Si−H bond to give the C−H/Si−H cross-dehydrocoupling product [(TpMe2)Y{η3-(N,N,N)-N(SiMe3)SiMe2CH2Si(Ph)(CSC6H4N)(CHSC6H4N)}] ( 5 ). These results indicate that this modification endows the silylamino ligand with novel reactivity.  相似文献   

18.
The Raman spectra of tetrasilylhydrazine and tetrasilylhydrazine-d12 have been recorded for the gas, liquid and solid phases from 25 to 2500 cm?1. The infrared spectra of N2(SiH3)4 and N2(SiD3)4 have been recorded for the gas and solid phases from 40 to 2500 cm?1. The vibrational data have been interpreted on the basis of a twisted (D2d) molecular configuration for both the fluid and solid states.  相似文献   

19.
The shock-induced thermal decompositions of vinylsilane and vinylsilane-d3 (0.2% on argon) have been studied in the temperature range of 1085–1275 K, and at total pressures of about 3100 torr. In systems without silylene traps, some induced decomposition occurs which is attributed to the silylene chain sequence VSiH → C2H2 + SiH2, S?iH2 + VSiH3 ? VSiH2SiH3 → VSiH2S?iH + H2, VSiH2S?iH → VSiH + S?iH2. In the presence of silylene traps (butadiene and acetylene), the overall decomposition kinetics are log k(VSiH3, s?1) = 14.95 ? 63,268 cal/2.303RT and log k(VSiD3, s?1) = 15.14 ? 64,815 cal/2.303RT. Three primary processes contribute to the decomposition: 1,1-H2 elimination, 1,2-H2 elimination, and ethylene elimination. Two mechanisms are proposed, one for exclusive primary process formation of C2H4, and the other for both primary and secondary formation routes. Modeling studies are reported which show that both mechanisms can be made compatible with the rate and product yield data within experimental errors.  相似文献   

20.
For 3d1 (V4+) impurity in 30PbO-5Bi2O3-(65-x)SiO2 glass systems with different concentrations x of V2O5, the defect structures and gyromagnetic factors are theoretically investigated by using the perturbation formulas of g factors for a tetragonally compressed octahedral 3d1 group. The concentration dependences of d-d transition band and g factors are suitably explained from the Fourier type concentration functions of the cubic crystal field parameter Dq, covalency factor N and relative tetragonal compression ratio ρ. The above concentration dependences of these quantities are suitably illustrated by the modifications of the local crystal field strength and electron cloud distribution with increasing x. The concentration variations of the electrical conductivity and dielectric relaxation are further analyzed from the stability of the systems in view of two competitive factors (increasing network polymerization and bulk stability at low concentrations and decreasing former SiO2 and stability at high concentrations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号