首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forn ≥ r ≥ 1, letf r (n) denote the minimum numberq, such that it is possible to partition all edges of the completer-graph onn vertices intoq completer-partiter-graphs. Graham and Pollak showed thatf 2(n) =n ? 1. Here we observe thatf 3(n) =n ? 2 and show that for every fixedr ≥ 2, there are positive constantsc 1(r) andc 2(r) such thatc 1(r) ≤f r (n)?n ?[r/2]n 2(r) for alln ≥ r. This solves a problem of Aharoni and Linial. The proof uses some simple ideas of linear algebra.  相似文献   

2.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

3.
The cycle‐complete graph Ramsey number r(Cm, Kn) is the smallest integer N such that every graph G of order N contains a cycle Cm on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erd?s, Faudree, Rousseau and Schelp that r(Cm, Kn) = (m ? 1) (n ? 1) + 1 for all mn ≥ 3 (except r(C3, K3) = 6). This conjecture holds for 3 ≤ n ≤ 5. In this paper we will present a proof for n = 6 and for all n ≥ 7 with mn2 ? 2n. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 251–260, 2003  相似文献   

4.
For 2≤r∈?, let Sr denote the class of graphs consisting of subdivisions of the wheel graph with r spokes in which the spoke edges are left undivided. Let ex(n, Sr) denote the maximum number of edges of a graph containing no Sr‐subgraph, and let Ex(n, Sr) denote the set of all n‐vertex graphs containing no Sr‐subgraph that are of size ex(n, Sr). In this paper, a conjecture is put forth stating that for r≥3 and n≥2r + 1, ex(n, Sr) = (r ? 1)n ? ?(r ? 1)(r ? 3/2)? and for r≥4, Ex(n, Sr) consists of a single graph which is the graph obtained from Kr ? 1, n ? r + 1 by adding a maximum matching to the color class of cardinality r ? 1. A previous result of C. Thomassen [A minimal condition implying a special K4‐subdivision, Archiv Math 25 (1974), 210–215] implies that this conjecture is true for r = 3. In this paper it is shown to hold for r = 4. © 2011 Wiley Periodicals, Inc. J Graph Theory 68:326‐339, 2011  相似文献   

5.
Let T(R) denote the set of all tournaments with score vector R = (r1, r2,…, rn). R. A. Brualdi and Li Qiao (“Proceedings of the Silver Jubilee Conference in Combinatorics at Waterloo,” in press) conjectured that if R is strong with r1r2 ≤ … ≤ rn, then |T(R)| ≥ 2n?2 with equality if and only if R = (1, 1, 2,…, n ? 3, n ? 2, n ? 2). In this paper their conjecture is proved, and this result is used to establish a lower bound on the cardinality of T(R) for every R.  相似文献   

6.
Let r k (n) denote the number of ways n can be expressed as a sum of k squares. Recently, S. Cooper (Ramanujan J. 6:469–490, [2002]), conjectured a formula for r 9(t), t≡5 (mod 8), r 11(t), t≡7 (mod 8), where t is a square-free positive integer. In this note we observe that these conjectures follow from the works of Lomadze (Akad. Nauk Gruz. Tr. Tbil. Mat. Inst. Razmadze 17:281–314, [1949]; Acta Arith. 68(3):245–253, [1994]). Further we express r 9(t), r 11(t) in terms of certain special values of Dirichlet L-functions. Combining these two results we get expressions for these special values of Dirichlet L-functions involving Jacobi symbols.   相似文献   

7.
Let an(l): 0 ≤ /denote the reseated empirical process based upon uniform spacings. Let {hn, n ≥ 1 } be a sequence decreasing to 0. Under appropriate conditions on hn. We give a functional lnw of the iterated logarithm for the set of increment functions {an (l + hn.) — an(l): 0 ≤ / ≤ 1 -hn}.  相似文献   

8.
A main result proved in this paper is the following. Theorem. Let G be a noncomplete graph on n vertices with degree sequence d1d2 ≥ · · · ≥ dn and t ≥ 2 be a prime. Let m = gcd{t, didj: 1 ≤ i < jn} and set Then R(tG, ℤt) = t(n + d) − d, where R is the zero-sum Ramsey number. This settles, almost completely, problems raised in [Bialostocki & Dierker, J Graph Theory, 1994; Y. Caro, J Graph Theory, 1991]. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 207–216, 1999  相似文献   

9.
10.
Let O(G) denote the set of odd-degree vertices of a graph G. Let t ? N and let ??t denote the family of graphs G whose edge set has a partition. E(g) = E1 U E2 U … U Etsuch that O(G) = O(G[Ei]) (1 ? i ? t). This partition is associated with a double cycle cover of G. We show that if a graph G is at most 5 edges short of being 4-edge-connected, then exactly one of these holds: G ? ??3, G has at least one cut-edge, or G is contractible to the Petersen graph. We also improve a sufficient condition of Jaeger for G ? ??2p+1(p ? N).  相似文献   

11.
An optimal solution for the following “chess tournament” problem is given. Let n, r be positive integers such that r<n. Put N=2n, R=2r+1. Let XN,R be the set of all ordered pairs (T, A) of matrices of degree N such that T=(tij) is symmetric, A=(aij) is skew-symmetric, tij ∈,{0, 1, 2,…, R), aij ∈{0,1,–1}. Moreover, suppose tii=aii=0 (1?i?N). tij = tik>0 implies j=k, tij=0 is equivalent to aij=0, and |ai1|+|ai2|+…+|aiN|=R (1?i?N). Let p(T, A) be the number of i such that 1?i?N and ai1 + ai2 + … + aiN >0. The main result of this note is to show that max p(T, A) for (T, A)∈XN, R is equal to [n(2r+1)/(r+1)], and a pair (T0, A0) satisfying p(T0, A0)=[n(2r+1)/(r+1)] is also given.  相似文献   

12.
Let A be a smooth curve in a Euclidean space E given by an arc length parametrization f: [0, 1] → E. Let πn = {0 = t0t1 ≤ … ≤ tn = 1} be a partition of [0, 1] and let Pn be the polygon with vertices f(t0), f(t1),…, f(tn). Let L(A) and L(Pn) denote the lengths of A and Pn, respectively. The paper investigates the behavior of n2 |L(A) ? L(Pn)| when the partition πn is induced by the sequence (mod 1) for some irrational number θ. It turns out that this behavior depends on the partial quotients of the continued fraction expansion of θ.  相似文献   

13.
Let G(n,c/n) and Gr(n) be an n‐node sparse random graph and a sparse random r‐regular graph, respectively, and let I(n,r) and I(n,c) be the sizes of the largest independent set in G(n,c/n) and Gr(n). The asymptotic value of I(n,c)/n as n → ∞, can be computed using the Karp‐Sipser algorithm when ce. For random cubic graphs, r = 3, it is only known that .432 ≤ lim infn I(n,3)/n ≤ lim supn I(n,3)/n ≤ .4591 with high probability (w.h.p.) as n → ∞, as shown in Frieze and Suen [Random Structures Algorithms 5 (1994), 649–664] and Bollabas [European J Combin 1 (1980), 311–316], respectively. In this paper we assume in addition that the nodes of the graph are equipped with nonnegative weights, independently generated according to some common distribution, and we consider instead the maximum weight of an independent set. Surprisingly, we discover that for certain weight distributions, the limit limn I(n,c)/n can be computed exactly even when c > e, and limn I(n,r)/n can be computed exactly for some r ≥ 1. For example, when the weights are exponentially distributed with parameter 1, limn I(n,2e)/n ≈ .5517, and limn I(n,3)/n ≈ .6077. Our results are established using the recently developed local weak convergence method further reduced to a certain local optimality property exhibited by the models we consider. We extend our results to maximum weight matchings in G(n,c/n) and Gr(n). For the case of exponential distributions, we compute the corresponding limits for every c > 0 and every r ≥ 2. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

14.
For a graph G, let a(G) denote the maximum size of a subset of vertices that induces a forest. Suppose that G is connected with n vertices, e edges, and maximum degree Δ. Our results include: (a) if Δ ≤ 3, and GK4, then a(G) ≥ n ? e/4 ? 1/4 and this is sharp for all permissible e ≡ 3 (mod 4); and (b) if Δ ≥ 3, then a(G) ≥ α(G) + (n ? α(G))/(Δ ? 1)2. Several problems remain open. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 113–123, 2001  相似文献   

15.
. Let d(D) (resp., d(G)) denote the diameter and r(D) (resp., r(G)) the radius of a digraph D (resp., graph G). Let G×H denote the cartesian product of two graphs G and H. An orientation D of G is said to be (r, d)-invariant if r(D)=r(G) and d(D)=d(G). Let {T i }, i=1,…,n, where n≥2, be a family of trees. In this paper, we show that the graph ∏ i =1 n T i admits an (r, d)-invariant orientation provided that d(T 1)≥d(T 2)≥4 for n=2, and d(T 1)≥5 and d(T 2)≥4 for n≥3. Received: July 30, 1997 Final version received: April 20, 1998  相似文献   

16.
Let σ1(X)≤ · ≤ σN(X)≤0 denote the ordered singular values ofan n × n matrix X and let α1 (X) ≤ α2(X)≤ · ≤ αn(X) denote its ordered main diagonal entries (assuming that they are real). Let B be any complex n × n skew-symmetric matrix and ||.|| any unitarily invariant norm. It is shown that for any rea positive semidefinite n × n matrix A.  相似文献   

17.
We consider a random walk Wn on the locally free group (or equivalently a signed random heap) with m generators subject to periodic boundary conditions. Let #T(Wn) denote the number of removable elements, which determines the heap's growth rate. We prove that limn→∞??(#T(Wn))/m ≤ 0.32893 for m ≥ 4. This result disproves a conjecture (due to Vershik, Nechaev and Bikbov [Comm Math Phys 212 (2000), 469–501]) that the limit tends to 1/3 as m → ∞. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005  相似文献   

18.
Given positive integers n and k, let gk(n) denote the maximum number of edges of a graph on n vertices that does not contain a cycle with k chords incident to a vertex on the cycle. Bollobás conjectured as an exercise in [2, p. 398, Problem 13] that there exists a function n(k) such that gk(n) = (k + 1)n ? (k + 1)2 for all nn(k). Using an old result of Bondy [ 3 ], we prove the conjecture, showing that n(k) ≤ 3 k + 3. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 180–182, 2004  相似文献   

19.
Let (Mr)r?0 be a logarithmically convex sequence of positive numbers which verifies M0 = 1 as well as Mr ≥ 1 for every r ∈ ? and defines a non quasi - analytic class. Let moreover F be a closed proper subset of ?n. Then for every function f on ?n belonging to the non quasi - analytic (Mr)-class of Beurling type, there is an element g of the same class which is analytic on ?,n F and such that Dαf(x) = Dαg(x) for every α ∈ ?n0 and xF.  相似文献   

20.
William C. Brown 《代数通讯》2013,41(12):3923-3946
Let k denote an algebraically closed field of arbitrary characteristic. Let C denote the set of all commutative, finite dimensional, local k-algebras of the form (B, m, k) with i(m) ?2. Here i(m) denotes the index of nilpotency of the maximal ideal m. A Akalgebra (R, J,k)∈L is called a (c1-construction if there exists (B, m, k)∈ £ ? {(k, (0), k)} and a finitely generated, faithful B-module N such that R,?B?(the idealization of N). (R.J.k) is called a (c2::-construction if there exist a (B,m k)∈ L, a positive integer p $ge;2 and a nonzero z £ SB(the socle of B) such that R?B[x]/(mX, Xp- z). Let Mn×n(K) denote the set of all n x n matrices, over k with n≥2. Let .Mn(k) denote the set of all maximal, commutative A;-subalgebras of Mn×n(k). In this paper, we show any (R J, k) ∈£?Mn;(k) with n>5 is a C1 or C2 -construction except for one isomorphism class. The one exception occurs when n = 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号