首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work a fast gas chromatography set‐up with on‐column injection was optimized and evaluated with a model mixture of C8–C28 n‐alkanes. Usual injection volumes when using narrow‐bore (e. g., 0.1 mm i.d.) analytical columns are ca. 0.1 μL. The presented configuration allows introduction of 10–30‐fold larger sample volumes without any distortion of peak shapes. In the set‐up a normal‐bore retention gap (1 m×0.32 mm i. d.) was coupled to a narrow‐bore (4.8 m×0.1 mm i. d.×0.4 μm film thickness) analytical column using a low dead volume column connector. The effects of the experimental conditions such as inlet pressure, sample volume, initial injection temperature, and oven temperature on a peak focusing are discussed. H‐u curves for helium and hydrogen are used to compare their suitability for high speed gas chromatography and to show the dependence of separation efficiency on the carrier gas velocity at high inlet pressures. In the fast gas chromatography system a baseline separation of C10–C28 n‐alkanes was achieved in less than 3 minutes.  相似文献   

2.
The congener-specific analysis of polychlorinated biphenyls (PCB) by high resolution gas chromatography on a 50 m × 0.25 mm fused silica column coated with a 0.26 μm film of 5% diphenyl polydimethylsiloxane (CPSil-8) has been significantly improved by series coupling with a 25 m × 0.22 mm column coated with a 0.10 μm film of 1,2-dicarba-closo-dodecarborane polydimethylsiloxane (HT-5). Using helium as carrier gas, a total of 64 congeners in technical PCB mixtures could be analyzed as resolved peaks by ECD (86 by MS) with the CPSil-8 column, and 84 by ECD (108 by MS) with the combination. The high upper temperature limit for these stationary phases (>300°C) enabled fast temperature programming and rapid analysis (60 min).  相似文献   

3.
A vacuum-pump-operated backflush system has been developed for applications involving high-speed, repetitive GC analysis of gas streams containing ppm and ppb levels of organic vapor. The system uses an injector capable of cryofocusing and a relatively short length of 0.25-mm i.d. fused silica column for the separation of relatively simple mixtures of volatile compounds. Analysis times typically are in the 5–10 s range, and backflush times are in the 2–5 s range. Gases from the flame ionization detector are used as the backflush carrier gas, and no modification of the detector is necessary. A procedure is described which allows the average gas velocity to be measured during backflush operation. The minimum backflush time is directly proportional to the analysis time and to the square of the column length, making this system most useful with short columns and short analysis times.  相似文献   

4.
金属有机框架CPL-1填充柱气相色谱分析氢同位素   总被引:1,自引:0,他引:1  
胡鹏  陈平  曹大伟  付小龙  肖成建  王和义 《色谱》2017,35(10):1023-1027
金属有机框架(MOFs)材料CPL-1的比表面积大、孔径均一,在低温条件下对氢同位素具有良好的量子筛分效应,是气相色谱固定相潜在的应用材料。采用CPL-1填充制备了长0.5 m、内径1 mm的微孔填充柱,借助单晶Al_2O_3颗粒间隙构建了色谱载气流通路径,在低温条件下探索研究了CPL-1填充柱的氢同位素分析性能。结果表明,在77 K时CPL-1对H_2和D_2的吸附量接近4 mmol/g,优于MnCl2/γ-Al_2O_3和γ-Al_2O_3,CPL-1填充柱在取样量0.25~2 mL范围内对低浓度氢同位素样品的检测具有良好的线性关系,检测的相对误差小于4%。CPL-1填充柱具有线性范围宽、重复性好、准确度高等优点,在氢同位素色谱分析中具有潜在的应用价值。  相似文献   

5.
A gas chromatographic method for volatile organic chemicals in which an aqueous sample is purged directly to a cryogenically cooled, fused silica column uses a Nafion tube drier between the purge vessel and GC column. The Nafion strips water from the gas stream during the purge step while allowing volatile halocarbons and aromatics to continue to the GC column. Examples of this technique are presented on 0.53 mm and 0.25 mm fused silica columns coated with a variety of stationary phases.  相似文献   

6.
A gas chromatography-mass spectroscopic method in electron ionization (EI) mode with MS/MS ion preparation using helium at flow rate 1 ml min(-1) as carrier gas on DB-5 capillary column (30 m x 0.25 mm i.d. film thickness 0.25 microm) has been developed for the determination of benzene in indoor air. The detection limit for benzene was 0.002 microg ml(-1) with S/N: 4 (S: 66, N: 14). The benzene concentration for cooks during cooking time in indoor kitchen using dung fuel was 114.1 microg m(-3) while it was 6.6 microg m(-3) for open type kitchen. The benzene concentration was significantly higher (p < 0.01) in indoor kitchen with respect to open type kitchen using dung fuels. The wood fuel produces 36.5 microg m(-3) of benzene in indoor kitchen. The concentration of benzene in indoor kitchen using wood fuel was significantly (p < 0.01) lower in comparison to dung fuel. This method may be helpful for environmental analytical chemist dealing with GC-MS in confirmation and quantification of benzene in environmental samples with health risk exposure assessment.  相似文献   

7.
The performance characteristics of a portable GC instrument requiring no compressed gas supplies and using relatively lightweight transportable components for the analysis of volatile organic components in large-volume air samples are described. To avoid the need for compressed gas tanks, ambient air is used as the carrier gas, and a vacuum pump is used to pull the carrier gas and injected samples through the wall-coated capillary column and a photoionization detector (PID). At-column heating is used eliminating the need for a conventional oven. The fused silica column is wrapped with heater wire and sensor wire so that heating is provided directly at the column. A PID is used since it requires no external gas supplies and has high sensitivity for many compounds of interest in environmental air monitoring. In order to achieve detection limits in the ppb range, an online multibed preconcentrator containing beds of graphitized carbons and carbon molecular sieves is used. After sample collection, the flow direction through the preconcentrator is reversed, and the sample is thermally desorbed directly into the column. Decomposition of sensitive compounds during desorption is greater with air as the carrier gas than with hydrogen.  相似文献   

8.
For clinical and environmental analyses utilizing capillary gas chromatography/mass spectrometry (GC/MS), increased sensitivity and speed of analysis are highly desirable. These performance advantages are realized using a WCOT column of 100 μm i.d. as compared to the more conventional 200 μm i.d. capillary columns. The improved sensitivity of capillary direct GC/MS with the 100 μm i.d. column for the confirmation of drugs of abuse will be demonstrated. For environmental analysis, the superior efficiency and resolution of the 100 μm i.d. column can be employed for the separation of priority pollutants. This approach is more amenable to capillary direct GC/MS providing a more effective interface to the mass spectrometer. As a result improved sensitivity and a considerable decrease in analysis time is achieved over that obtained with the larger diameter environmental specialty phase columns.  相似文献   

9.
A new configuration for coupling a purge-and-trap unit to a capillary column gas chromatograph via a cryogenic focusing interface has been developed. In this configuration, the precolumn of the cryogenic focusing interface was inserted through the septum of a split/splitless injection port where it served as both sample transfer and carrier gas supply lines. The injection port of the gas chromatograph was modified by plugging the carrier gas and the septum purge lines. This configuration allowed for the desorption of analytes at high flow rates while maintaining low, analytical-column flow rates which are necessary for optimum capillary column operation. The capillary column flow rate is still controlled by the column backpressure regulator. Chromatograms of purgeable aromatics exhibited improved resolution, especially for early eluting components compared to those obtained by direct liquid injection using the normal splitless injection mode. Quantitative sample transfer to the analytical column afforded excellent linearity and reproducibility of compounds studied.  相似文献   

10.
Pyrrolidinedithiocarbamate (PDTC) chelates of Zn(II), Cu(II), Ni(II), Co(III), Fe(III), Mn(II), Cr(III), and VO(II) were analysed by capillary GC on a DB-1701 column (30 m x 0.25 mm id) with flame ionisation detection (FID). Linear calibrations were attained within "1-30 microg/mL" for Ni(II), Fe(III), Mn(II), Cr(III), Cu(II), and VO(II), and within "2-50 microg/mL" for Co(III) and Zn(II). The limits of detection were in the "150-500 ng/mL" range, corresponding to 15-50 pg amounts reaching the FID system. The optimised method was applied to the determination of Cu(II) and Ni(II) in coins, and that of Zn(II), Cu(II), Ni(II), Fe(III), Mn(II), Cr(III), and VO(II) in pharmaceutical preparations with relative standard deviations within 1.1-5.2%. The results obtained are in good agreement with sewage water samples and the declared values for the pharmaceutical formulations, or with the results of AAS of metal contents in coins, pharmaceutical preparations, and sewage water samples.  相似文献   

11.
气相色谱-串联质谱法测定土壤中的邻苯二甲酸酯   总被引:4,自引:0,他引:4  
Li H  Tian F  Ren X  Wang X 《色谱》2011,29(6):563-566
建立了土壤中6种邻苯二甲酸酯的气相色谱-串联质谱(GC-MS/MS)分析方法。土壤样品用超声提取,以二氯甲烷-丙酮(1:1, v/v)混合溶液为提取溶剂,提取液经Florisil小柱净化后,经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,利用MS/MS的多反应监测(MRM)模式进行定性和定量。结果表明本方法可对样品中的邻苯二甲酸酯进行分析,在10~1000 μg/L质量浓度范围内,线性关系良好,相关系数为0.9973~0.9976;6种邻苯二甲酸酯的相对标准偏差(RSD)不大于14.3%, 2 μg/kg和10 μg/kg两个加标水平的回收率为72.9%~106.2%; 6种目标化合物的检出限为0.1~0.5 μg/kg。该方法快速准确、背景干扰较少、分析灵敏度较高,适用于土壤样品中邻苯二甲酸酯的分析。  相似文献   

12.
A direct injection method for large volume samples which avoids severe tailing of the solvent peak has been developed using a packed column injector (up to 100 μl) leading into an ordinary capillary column (0.3 mm i.d.). Modifications are made to the cooler zones of the inlet port and on the carrier gas flow control system. This injection technique is based on the effective use of phase soaking and cold trapping using a retention gap. The large volume of solvent vapor is rapidly purged out of the injector with a higher flow of carrier gas while the solutes trapped at the head of the column are subsequently analyzed with another optimum flow rate. The proposed carrier gas flow regulation system is also compared with conventional split/splitless injection methods.  相似文献   

13.
尹志辉  刘建 《分析化学》1996,24(11):1305-1308
本文采用XE-60交联弹性石英性细管柱及407有机体埴充柱气色谱法可分分析丙烯腈中有机杂质。通过对柱长、担体粒度、液膜厚度、柱温和载气流量的选择。确定出最佳色 谱条件。  相似文献   

14.
黄雪松  欧仕益  唐书泽  傅亮  吴建中 《色谱》2006,24(5):499-502
蟛蜞菊具有抗肿瘤、抗病毒作用,其主要活性成分是倍半萜内酯类物质。以分离纯化所得的结晶倍半萜内酯A与B为参考标准,采用HP毛细管色谱柱(30 m×0.25 mm i.d.× 0.25 μm),程序控制升温,氢火焰离子化检测器检测,测定了蟛蜞菊的地上部分(茎叶和花)中倍半萜内酯A与B的含量。测定结果表明:蟛蜞菊茎叶中的倍半萜内酯A和B的含量分别为(239±6.4) μg/g和(156±15) μg/g;花中倍半萜内酯A和B的含量分别为(233±6.5) μg/g和(173±16) μg/g。该法可用于蟛蜞菊原料及其药品的质量控制。  相似文献   

15.
Summary The retention and resolution of simple mixture of Al(III), Cr(III), Co(III), and Fe(III) acetylacetonates were investigated on capillary columns coated with methyl and methyl phenyl silicones (OV-1 or OV-17) used as the stationary phase, at different column temperatures and carrier gas flow rates. Successful elution and good resolution were obtained only for the Al(III) and Cr(III) complexes, both under isothermal and programmed-temperature conditions; better resolution was observed on the column coated with OV 17.  相似文献   

16.
Many solvent extracts must be concentrated prior to analysis. Both Kuderna-Danish (K-D) concentration and inert gas blowdown are commonly used. Significant losses often occur with the latter. Solvent removal/thermal desorption (SRTD) on a precolumn was investigated here as an alternative or supplement to these methods. The compounds studied included polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs). SRTD was carried out by injecting 100 μL of extract into a cartridge-type precolumn, selectively volatilizing the solvent with a stream of carrier gas, then thermally desorbing the analytes to a fused silica capillary gas chromatography (GC) column. The mean total recoveries and mean standard errors obtained were 109 and ±12%, respectively. SRTD was found to give sharper peaks than were obtainable with on-column injection. Method detection limits accessible for PCBs by capillary GC with electron impact mass spectrometry with the assistance of SRTD were estimated. Overall, SRTD was found to be an effective, rapid, high recovery concentration method for solvent extracts.  相似文献   

17.
The use of 10%, 1%, and 0.1% ammonia in helium as carrier gas was investigated as a means of improving poor chromatographic peak shape often associated with low level determinations of amine compounds using thin film capillary columns. The 1% ammonia in helium was found suitable for improving the peak shape of sterically unhindered amine compounds, such as urethane and certain aliphatic primary amines, during gas chromatographic analysis on thin film columns. There was a negligible effect on the peak tailing arising on thick film columns. The 0.1% ammonia in helium was suitable, but not as efficient as the 1% ammonia in helium, in eliminating the peak tailing associated with low level analysis of amine compounds. The signal-to-noise (S/N) ratio improved from < 1 using helium carrier gas to 20–25 (for certain test amine compounds) using 1% ammonia in carrier gas. The 10% ammonia in helium carrier gas had an effect on the chromatographic performance similar to that of the 1% ammonia in helium, but the baseline level was very high and this mixture was not used in further studies.  相似文献   

18.
The use of larger volume injection with on‐column injection and fast GC commercial instrumentation was evaluated with the model mixture of n‐alkanes of a broad range of volatility (C10–C28). The presented configuration allows introduction of 40–80‐fold larger sample volumes without any distortion of peak shapes compared to “usual” fast GC set‐ups using narrow‐bore columns. A normal‐bore retention gap (1–5 m×0.32 mm ID) was coupled to a narrow‐bore (5 m×0.1 mm ID×0.4 μm film thickness) analytical column using a standard press‐fit connector. The connection was tight and reliable, and hence suitable for hydrogen as carrier gas. The effect of pre‐column and analytical column connector, injection volume, pre‐column length, column inlet pressure, and analyte volatility on peak shape, peak broadening, and focusing are discussed. The precision of chromatographic data measurements and peak capacity under optimised temperature programmed conditions for fast separations with large volume injection were found to be very good. The presented fast GC set‐up with on‐column injection extends the applicability of the technique to trace analysis.  相似文献   

19.
We previously developed an analyzer able to detect hydrogen concentrations of less than 50 cm3/1000 m3. The analyzer uses a carrier gas purifier and a low temperature separation column to remove impurities preventing measurement of low concentrations from the carrier and sample gases. It uses a trace reduction detector with a mercuric oxide bed to detect the concentration of hydrogen based on the reduction reaction of mercuric oxide with hydrogen. We have now evaluated the performance of the analyzer by carrying out a series of tests that measured the spectrum peak and the retention time. We used three sample gases with hydrogen concentrations of 5, 20, and 50 cm3/1000 m3 in nitrogen dilution gas. The measured peak was stable (it was within a relative standard deviation of less than 10%), and there was a linear relationship between the peak and hydrogen concentration. However, the retention time gradually shortened as the measurements were repeated. The shortening was reduced by warming the low temperature separation column used in the analyzer; it was not observed when we used a hydrogen sample gas diluted by helium instead of nitrogen. Using nitrogen as a dilution gas apparently shortens the retention time. We thus added an MS-5A separation column and a thermal conductivity detector. The nitrogen and hydrogen in the sample/carrier gas are separated, and the nitrogen is efficiently removed by switching the pass line to a release line after the hydrogen has been sent to the low temperature separation column. An analyzer using this "after-cut method" was able to stably measure infinitesimal hydrogen concentrations and was not affected by nitrogen in the sample gas.  相似文献   

20.
罗凡  冯飞  赵斌  田博文  杨雪蕾  周海梅  李昕欣 《色谱》2018,36(9):911-916
色谱柱的微型化是实现气相色谱仪微小型化必须要解决的关键问题之一。该文基于微机电系统技术设计制作了一种具有高深宽比微沟道的气相微色谱柱。通过COMSOL软件进行仿真分析,得出气相微色谱柱具有均匀的流速场分布。测试结果表明,该气相微色谱柱成功分离了烷烃类气体混合物及苯系物,其理论塔板数可达14028 plates/m,C7~C8的分离度最高,为10.82。这种气相微色谱柱由于具有体积小、能耗低、分离性能好等优点,可望在微小型气相色谱仪上获得应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号