首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The study of the chemical behavior of some benz[b] indeno[1,2-e] [1,4] thiazine derivatives was accomplished. Different reactivities were observed for 4b,5-dihydrobenz[b]-indeno[1,2-e] [1,4] thiazine-10α(11H)-ol (3) and 5-ethyl-4b,5-dihydrobenz[b] indeno[1,2-e]-[1,4] thiazine-10α(11H)-ol (5); 3 is reoxidated to benz[b] indeno[1,2-e] [1,4] thiazine-10α(11H)-ol (2), while 5 undergoes transposition and oxidation to spiro[3-ethylbenzo-thiazol-2(3H), 1′-indan-2′-one] (6). Possible pathways for these transformations are discussed.  相似文献   

2.
Dehydrative ring closure reactions were carried out on fused 4‐(2‐hydroxyethylamino) (or 2‐hydroxyethoxy or 2‐hydroxyethylthio)pyrimidines ( 2a , 2b , 2c ) to give fused 2,3‐dihydroimidazo[1,2‐c] (or 2,3‐dihydrooxazolo[3,2‐c] or 2,3‐dihydrothiazolo[3,2‐c])pyrimidines. This reaction produced the pentacyclic 1,2,4,5‐tetrahydro[1]benzothieno[2′,3′:6,7]thiepino[4,5‐e]imidazo[1,2‐c]pyrimidine ( 3a ) and 1,2,4,5‐tetrahydro[1]benzothieno[2′,3′:6,7]thiepino[4,5‐e]thiazolo[3,2‐c]pyrimidinium chloride ( 3c ) from the 2‐hydroxyethylamino‐derivative and 2‐hydroxyethylthio‐derivative, respectively. In contrast, 2‐hydroxyethoxy‐derivative ( 2b ) gave the rearrangement product, 3‐(2‐chloroethyl)‐5,6‐dihydro[1]benzothieno[3′,2′:2,3]thiepino[4,5‐d]pyrimidin‐4(3H)‐one ( 4 ). Effects of the synthesized compounds on collagen‐induced platelet aggregation were also evaluated.  相似文献   

3.
A series of 2‐substituted 2H‐thieno[3,4‐e][1,2,4]thiadiazin‐3(4H)‐one 1,1‐dioxides ( 2 ), 2‐substituted 2H‐thieno[2,3‐e][1,2,4]thiadiazin‐3(4H)‐one 1,1‐dioxides ( 3 ), 2‐substituted 4,6‐dihydropyrazolo[4,3‐e]‐[1,2,4]thiadiazin‐3(2H)‐one 1,1‐dioxides ( 4 ), 2‐substituted 2,3‐dihydrooxazolo[3,2‐b]thieno[3,4‐e]‐[1,2,4]thiadiazine 5,5‐dioxides, ( 5 ), 6‐substituted 6,7‐dihydro‐2H‐oxazolo[3,2‐b]pyrazolo[4,3‐e][1,2,4]thia‐diazine 9,9‐dioxides ( 6 ) and 7‐substituted 6,7‐dihydro‐2H‐oxazolo[3,2‐b]pyrazolo[4,3‐e][1,2,4]thiadiazine 9,9‐dioxides ( 7 ) were synthesized as potential psychotropic agents.  相似文献   

4.
CMR spectra of the following bicyclo[2,2,2]octane compounds were measured: 1-azabicyclo[2,2,2]octan-3-one ( 3 ), 2-azabicyclo[2,2,2]octan-3-one ( 5 ), bicyclo[2,2,2]octaone ( 4 ), 3-ethyl-1-azabicyclo[2,2,2]oct-2-ene ( 6 ) and of the Z and E isomers of 3-ethylidene-1-azabicyclo-[2,2,2]octane ( 1 and 2 ). The attribution of the signals and confirmation of the Z and E configuration of isomers ( 1 ) and ( 2 ) is described.  相似文献   

5.
Starting with 2-substituted quinoline-3,4-dicarboxylic acids, a series of substituted 1,2,3,4-tetrahydropyrimido[4,5-c]quinolinone-3-thiones were obtained. The latter compounds were converted to the three novel polyazasteroid series: 1,2,4-Triazolo[3′,4′:2,3]pyrimido[4,5-c]-quinolin-11(12H)ones, imidazo[2′,1′:2,3]pyrimido[4,5c]quinolin-11(12H)ones and 2,3-dihydroimidazo[2′,1′:2,3]pyrimido[4,5-c]quinolin-11(12H)ones. The intermediate 3-hydrazino-1,2-dihydropyrimido[4,5-c]quinolinones and nitrous acid gave the 3-azido derivatives rather than the tetrazolo compounds.  相似文献   

6.
Metal complex formation was investigated for di‐exo‐, di‐endo‐ and trans‐2,3‐ and 2,5‐disubstituted trinorbornanediols, and di‐exo‐ and di‐endo‐ 2,3‐disubstituted camphanediols using different divalent transition metals (Co2+, Ni2+, Cu2+) and electrospray ionization quadrupole ion trap mass spectrometry. Many metal‐coordinated complex ions were formed for cobalt and nickel: [2M+Met]2+, [3M+Met]2+, [M–H+Met]+, [2M–H+Met]+, [M+MetX]+, [2M+MetX]+ and [3M–H+Co]+, where M is the diol, Met is the metal used and X is the counter ion (acetate, chloride, nitrate). Copper showed the weakest formation of metal complexes with di‐exo‐2,3‐disubstituted trinorbornanediol yielding only the minor singly charged ions [M–H+Cu]+, [2M–H+Cu]+ and [2M+CuX]+. No clear differences were noted for cobalt complex formation, especially for cis‐2,3‐disubstituted isomers. However, 2,5‐disubstituted trinorbornanediols showed moderate diastereomeric differentiation because of the unidentate nature of the sterically more hindered exo‐isomer. trans‐Isomers gave rise to abundant [3M–H+Co]+ ion products, which may be considered a characteristic ion for bicyclo[221]heptane trans‐2,3‐ and trans‐2,5‐diols. To differentiate cis‐2,3‐isomers, the collision‐induced dissociation (CID) products for [3M+Co]2+, [M+CoOAc]+, [2M–H+Co]+ and [2M+CoOAc]+ cobalt complexes were investigated. The results of the CID of the monomeric and dimeric metal adduct complexes [M+CoOAc]+ and [2M–H+Co]+ were stereochemically controlled and could be used for stereochemical differentiation of the compounds investigated. In addition, the structures and relative energies of some complex ions were studied using hybrid density functional theory calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A series of new N- and S-substituted 1,3,4-oxadiazole derivatives were synthesized. 5-Pyridin-3-yl-3-[2-(5-thioxo-4,5-dihydro-l,3,4-thiadiazol-2-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione and 5-[(5-(pyridin-3-yl)-1,3,4-oxadiazol-2-ylthio)methyl]-N-phenyl-1,3,4-thiadiazol-2-amine were formed by cyclization of 3-(5-pyridin-3-yl-2-thioxo-1,3,4-oxadiazol-3(2H)-ylpropanimidohydrazide and 2-[(5-pyridin-3-yl-1,3,4-oxadiazol-2-yl)thio]thiosemicarbazide with CS2 and H2SO4. On the other hand, a number of new bicyclic 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives were synthesized. 6-Pyridin-3-ylbis[1,2,4]‐triazolo[3,4-b:4′,3′-d][1,3,4]thiadiazole-3(2H)-thione was synthesized by reaction of 6-(hydrazino)-3-pyridine-3-yl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole with CS2/KOH/EtOH. The structures of the newly synthesized compounds were elucidated by the spectral and analytical data IR, Mass, and 1H NMR spectra. Correspondence: Adel A.-H. Abdel-Rahman, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt; Wael A. El-Sayed, National Research Centre, Department of Photochemistry, Cairo, Egypt.  相似文献   

8.
Naphtho[2,1‐b]furan‐2‐yl)(8‐phenylpyrazolo[5,1‐c][1,2,4]triazin‐3‐yl)methanone, ([1,2,4]triazolo[3,4‐c][1,2,4]triazin‐6‐yl)(naphtho[2,1‐b]furan‐2‐yl)methanone, benzo[4,5]imidazo[2,1‐c][1,2,4]triazin‐3‐yl‐naphtho[2,1‐b]furan‐2‐yl‐methanone, 5‐(naphtho[2,1‐b]furan‐2‐yl)pyrazolo[1,5‐a]pyrimidine, 7‐(naphtho[2,1‐b]furan‐2‐yl)‐[1,2,4]triazolo[4,3‐a]pyrimidine, 2‐naphtho[2,1‐b]furan‐2‐yl‐benzo[4,5]imidazo[1,2‐a]pyrimidine, pyridine, and pyrazole derivatives are synthesized from sodium salt of 5‐hydroxy‐1‐naphtho[2,1‐b]furan‐2‐ylpropenone and various reagents. The newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation, and alternative synthetic route whenever possible. J. Heterocyclic Chem., (2012).  相似文献   

9.
8,10-Dimethyl-3-(unsubstituted, methyl, ethyl, n-butyl, phenyl)-4-hydroxypyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidin-2(1H)-ones and 3-(2-hydroxyethyl)-2,8,10-trimethylpyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidin-4-ol were synthesized by cyclocondensation of 3-amine-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridine with ethyl malonates and α-acetyl-γ-butyrlolactone. Dichloro- and diazido- derivatives were obtained from the reaction of pyridopyrazlopyrimidine derivatives with POCl3 followed by NaN3. The tetrahetrocyclic systems were formed by cyclization of 4-chloro-3-(2-chloroethyl)-2,8,10-trimethylpyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine with the appropriate primary amines. The structures of all compounds were established by NMR and mass spectra.  相似文献   

10.
6‐Mercaptopurine has been utilized for the synthesis of various fused purine analogues through different chemical reactions to yield [1,4]thiazino[4,3,2‐gh ]purines 2, 3, 10a,b, 14 , (8‐oxo‐[1,4]thiazino[4,3,2‐gh ]purin‐7(8H )‐ylidene) acetate 4 , [1,4]thiazepino[4,3,2‐gh ]purine 6 , thiazolo[3,4,5‐gh ]purine 7 , imidazo[1,5,4‐gh ]purin‐5‐amine 8 , 5‐methylimidazo[1,5,4‐gh ]purine 9 , [1,2,4]triazino[4,3‐i ]purines 16, 18, 21 , [1,2,4]triazino[4,5,6‐gh ]purine 20 , 5‐methyl‐2‐(7H ‐purin‐6‐yl)‐1H ‐pyrazol‐3(2H )‐one 22 , [1,2,4]triazolo[4,3‐i ]purine 23 , [1,2,5]triazepino[5,4,3‐gh ]purine 24 , and ethyl 6‐(2‐(ethoxycarbonyl)hydrazinyl)‐9H ‐purine‐9‐carboxylate 26 . Seventeen of the newly synthesized compounds were selected by the NCI, Maryland, USA, and were tested for their anticancer activity in an initial single high dose in the full NCI 60 cell line panel among which [1,4]thiazino[4,3,2‐gh ]purine‐7,8‐dione 2 , 7‐benzyl‐[1,4]thiazino[4,3,2‐gh ]purine 10b , and 3‐(2,4‐dimethoxyphenyl)‐7H ‐[1,2,4]triazolo[4,3‐i]purine 23 were found to possess very potent anticancer activity against most of the cancer cell lines.  相似文献   

11.
The bifunctional 3/4‐[acetyl]phenylsydnones 1a, 1b were subjected to a one‐pot ring conversion to 3‐[3/4‐acetyl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 2a, 2b , which on further bromination yielded the 3‐[3/4‐bromoacyl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 3a, 3b . Reaction of these compounds with thiourea yielded the 3‐[3/4‐(2‐aminothiazol‐4‐yl)]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 4a, 4b . The other thiazole derivatives 5a, 5b–7a, 7b were prepared by using thiosemicarbazide, thioacetamide, and thiobenzamide, respectively. In another reaction of the bromoacetyl compounds ( 3a, 3b ) with 2‐aminopyridine and 2‐aminothiazole, the fused biheterocyclic compounds 3‐[3/4‐imidazo‐[1,2‐a]pyridine‐2‐yl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 8a, 8b and 3‐[3/4‐imidazo‐[2,1‐b]‐thiazol‐6‐yl]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 9a, 9b were obtained. The 3‐[3/4‐(benzofuran‐2‐carbonyl)]phenyl‐5‐methyl‐3H‐[1,3,4]‐oxadiazol‐2‐ones 10a, 10b were obtained by treatment of compounds 3a, 3b with o‐hydroxy benzaldehyde. Most of these compounds exhibited antifungal activity greater than the reference drugs used. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:50–54, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20255  相似文献   

12.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

13.
The pK a constants and relative abundances of unionized and ionized forms of Montelukast sodium {the sodium salt of 2-[1-[[(1R)-1-[3-[2-(7-chloroquinolin-2-yl)ethenyl] phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl]sulfanylmethyl]cyclopropyl]acetic acid} and Levodropropizine {(2S)-3-(4-phenylpiperazin-1-yl)propane-1,2-diol} were determined potentiometrically from measurements at various pHs. These determinations were in order to relate their pK a values with their bioavailability and to provide chemical data to be used in their analysis.  相似文献   

14.
Some novel indeno[2,1-b]thiophenes, indeno[1′,2′:4,5]thieno[2,3-d][1,2,3]triazines, indeno[1′,2′:4,5]thieno[2,3-d]pyrimidines, indeno[1′,2′:4,5]thieno[2,3-d][1,3]thiazolo[3,2-a]pyrimidines, and indeno[1′,2′:4,5]thieno[2,3-d][1,2,4]triazolo[4,3-a]pyrimidines 2–16 were prepared starting with 2-aminoindeno[2,1-b]thiophene-3-carboxylic acid amide ( 1 ). Furthermore, the antimicrobial evaluation of the prepared products showed that many of them revealed promising antimicrobial activity.  相似文献   

15.
2,4-Diamino-5,7-dihydro-6H-thiopyrano[4′,3′:4,5]thieno[2,3-d]pyrirnidine, 2,4-diamino-9H-mdeno[1′,2′:4,5]thieno[2,3-d]pyrimidine, 2,4-diamino-5H-indeno[2′,1′:4,5]thieno[2,3-d]pyrimidine, 9,11-diamino-5,6-dihydronaphtho[1′,2′:4,5]thieno[2,3-d]pyrimidine, 7,9-diamino-5,6-dihydronaphtho[2′,1′:4,5]thieno[2,3-d]pyrimidine, 2,4-diamino-7-benzy]-5,6,7,8-tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine, and various 2,4-diamino-5,6,7,8-tetrahydro-[1]benzothieno[2,3-d]pyrimidines were synthesized by cyclization of the requisite fused 2-aminothio-phenene-3-carbonitriles utilizing chloroformamidine hydrochloride in diglyme. Several compounds exhibited strong inhibitory effects against Streptococcus faecalis (MGH-2), Staphylococcus aureus (UC-76), Streptococcus faecium (ATCC 8043), Lactobacillus casei (ATCC 7469), and Pediococcus cerevisiae (ATCC 8081) in vitro, and three compounds displayed antimalarial activity against Plasmodium berghei in mice and P. falciparum (Uganda I) in vitro.  相似文献   

16.
The reaction of ethyl‐3‐mercaptoquinoxaline‐2‐carboxylate with phenacyl bromide, ethyl chloroacetate, chloroacetonitrile or chloroacetone furnished the corresponding 3‐hydroxy thieno[2,3‐b]quinoxaline. 2‐Cyano‐3‐hydroxythieno[2,3‐b]quinoxaline and 2‐acetyl‐3‐hydroxythieno[2,3‐b]quinoxa line were employed as precursors in the synthesis of some novel furo[2′,3′:4,5]thieno[2,3‐b]quinoxaline, pyrano[2′,3′:4,5]thieno[2,3‐b]quinoxaline and other heterocyclic systems fused with thieno[2,3‐b]quinoxalines. The antibacterial and antifungal activities of some the synthesised compounds were studied.  相似文献   

17.
Planar chiral [2]‐ and [3]rotaxanes constructed from pillar[5]arenes as wheels and pyridinium derivatives as axles were obtained in high yield using click reactions. The process of rotaxane formation was diastereoselective; the obtained [2]rotaxane was a racemic mixture consisting of (pS, pS, pS, pS, pS) and (pR, pR, pR, pR, pR) forms of the per‐ethylated pillar[5]arene ( C2 ) wheel, and other possible types of the [2]rotaxane did not form. Isolation of the enantiopure [2]rotaxanes with one axle through (pS, pS, pS, pS, pS)‐ C2 or (pR, pR, pR, pR, pR)‐ C2 wheels was accomplished. Furthermore, pillar[5]arene‐based [3]rotaxane was successfully synthesized by attachment of two pseudo [2]rotaxanes onto a bifunctional linker. [3]Rotaxane formed in a 1:2:1 mixture with one axle threaded through two (pS, pS, pS, pS, pS)‐ C2 , one (pS, pS, pS, pS, pS)‐ C2 and one (pR, pR, pR, pR, pR)‐ C2 (meso form), or two (pR, pR, pR, pR, pR)‐ C2 wheels. The [3]rotaxane enantiomers and the meso form were successfully isolated using appropriate chiral HPLC column chromatography. The procedure developed in this study is the starting point for the creation of pillar[5]arene‐based interlocked molecules.  相似文献   

18.
The systematic integration of the small 2π- and 4π-electron systems cyclopropenylium ion, cyclopropenone, oxo-cyclobutenylium ion, and cyclobutadiene into phane chemistry was initiated only a few years ago. [n2]Cyclopropenylophanes, [n2]cyclopropenonophanes, metal-capped [n4]cyclobutadienosuperphanes, and other new families of double-decker phane species became available from cycloalkydiynes through special methods of double [2+1]cycloaddition with carbenes and metal complex induced dimerization by double [2+2]cycloaddition. Phane-specific structural features were elucidated by X-ray structural analyses. Cyclic voltammetry and PE spectroscopy as well as MO calculations reealed considerable interactions between closely spaced π-electron systems. Decapping cyclobutadienosuperphanes formally extended the synthetic principle to threefold [2+2]cycloadditions resulting in [n4]-bridged tricyclo-[4.2.0.03, 5]octa-3,7-dienes, which represent a new type of cage compounds. Moreover, completion to fourfold [2+2]addition was achieved with the photoinduced transformation of [34]bridged tricyclo[4.2.0.03, 5]octa-3,7-diene into propella[34]cubane.  相似文献   

19.
Synthesis and Photochrmic Characteristics of 1,3-Dihydrospiro[2H-indole-2,3′-[3H-]pyrimido[5,4-f][1,4]benzoxazines] and 1,3-Dihydrospiro[2H-indole-2,7′[7H]thiazolo[5,4-f][1,4]benzoxazines] Two new series of 1,3-dihydrospiro[2H-indole-ozazine] derivatives were synthesized, the 1,3-dihydrospiro[2H-indole-2,3′-[3H]pyrimido[5,4]pyrimido[5,4-f][1,4]benzoxaines] 4-10 and the 1,3-dihydrospiro[2H-indole2,7′-[7H]thiazolo-[5,4-f][1,4]benzoxaines] 11–17 . These series extend the available range of photochromic properties (rate constant of thermal bleaching, UV/VIS spectrum of the opened coloured form, and photocoloration yield), an interesting feature of variable-transmission materials. The synthesis of these compounds (Scheme 1) required the preliminary synthesis of intermediate β-hydroxy-α-nitrosotherocycles 18 and 19 (Scheme 2). Important amounts of a coloured, non-photochromic, stable secondary product (See 20 ) were found in the condensation in the spiro[indole-thiazolobenzoxazine] series. The photochromic characteristics of the new derivatives were determined using a flash-photolysis apparatus coupled to a fast-scanning spectrometer. The role of the heteroatoms in the oxazine moiety and the role of substitutents in the indole moiety were investigated quantitatively through the study of the photochromic properties and the solvent effects. The presence of an S-atom gives rise to interesting properties which open up new prospects for synthesis and application.  相似文献   

20.
Reactions of 1,3-disubstituted 5-aminopyrazole-4-carbonitrile derivatives 3a-o with dimethyl acetylenedicarboxylate in the presence of potassium carbonate in dimethyl sulfoxide gave the corresponding dimethyl 1,3-disubstituted pyrazolo[3,4-b]pyridine-5,6-dicarboxylates 4a-o which were allowed to react with excess hydrazine hydrate under ethanol refluxing conditions followed by heating at 250-300° to give 1,3-disubstituted 4-amino-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 7a-s in good yields. Similarly, 1,3-disubstituted 4-hydroxy-1H-pyrazolo[4′3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 10a-c were obtained from alkyl 1,3-disubstituted 5-aminopyrazole-4-carboxylates 8a-c . These tricyclic pyridazine derivatives were alternatively synthesized from 4-hydroxypyrrolo[3,4-e]pyrazolo[3,4-b]pyridine-5,7-diones 13a-c prepared by reactions of 5-aminopyrazoles (8e-g) with methyl 1-methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carboxylate (11a) followed by the Gould/Jacobs reaction. 1-Methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carbonitrile smoothly reacted with 2-aminobenzimidazoles to give the corresponding 5-amino-3-methyl-1H-pyrrolo[3′4′:4,5]pyrimido[1,2-a]benzimidazole-1,3(2H)-diones 16a-e , which were readily converted to the desired 12-aminopyridazino[4′,5′:4,5]pyrimido-[1,2-a]benzimidazole-1,4(2H,3H)-diones 17a-e in good yields. Other pyridazinopyrimidine derivatives were also obtained by the reaction of the corresponding 2-aminoheterocycles with the maleimide in good yields. Substituted anilines reacted 11b in refluxing methanol to give the corresponding methyl 4-phenylamino-1-methyl-2,5-dioxo-1H-pyrrole-3-carboxylates 25a-e which were converted in good yields to 2-methylpyrrolo[3,4-b]quinoline derivatives 26a-e by heating in diphenyl ether. Reaction of 26a-c with hydrazine hydrate gave 10-hydroxypyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 27a-e in good yields. The desired 10-aminopyridazino[4,5-b]pyridazine-1,4(2H,3H)-diones 30a-e were obtained in good yields by the chlorination of 4a-e with phosphorus oxychloride followed by aminolysis with 28% ammonium hydroxide. Some pyridazino[4,5-a][2.2.3]cyclazine-1,4(2H,3H)-diones 37a,b as luminescent compounds were synthesized via several steps from indolizine derivatives. The key intermediates, dimethyl 6-dimethylamino[2.2.3]cyclazine-1,2-dicarboxylates 34, 36 , were synthesized by the [8 + 2] cycloaddition reaction of the corresponding 7-dimethylaminoindolizines 33, 35 with dimethyl acetylenedicarboxylate in the presence of Pd-C in refluxing toluene. Some were found to be more efficient than luminol in light production. 4-Amino-3-methylsufonyl-1-phenyl-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-dione (7r) , 10-hydroxypyridazino[4,5-b]-quinoline-1,4(2H,3H)-diones 27a-e , and 10-aminopyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 30a-e showed the greatest chemiluminescence intensity in the presence of hydrogen peroxide peroxidase in a solution of phosphate buffer at pH 8.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号