首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

2.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The anionic homopolymerization of 2,5‐dimethylhexa‐1.5‐dien‐3‐yne (DMDEY) was investigated by utilizing butyllithium, sec‐butyllithium, diphenylmethylsodium, and naphthalene/sodium as initiators. Soluble polymers with molecular weights up to 50 000 g/mol corresponding to Mw/Mn of 1.05 were obtained through homopolymerization with diphenylmethylsodium as initiator in THF at low temperatures. The homopolymers consist of 1,2‐linked monomer units with pendant 3‐methylbut‐3‐en‐1‐yne groups.  相似文献   

4.
Disproportionation/combination rate constant ratios, kd /kc, have been measured for the collision between CF3CH2CH2 and CF3 radicals to be 0.022 ± 0.002 and for CF3CH2CH2 and CF3CH2CH2 radicals to be 0.100 ± 0.002. Comparison to previous work from this laboratory for the reaction of CF3CH2CHCl with CF3 radicals shows that substitution of Cl for H increases the kd /kc by about 50%; however, for the auto disproportionation-combination of CF3CH2CH2 radicals the chlorine substituent decreases the observed rate constant ratio by a factor of two. The chlorine substituent effect on the observed kd /kc ratios is compared to predictions from molecular orbital calculations. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The rotational spectra of two isotopologues of a 1:1 difluoromethane–dichloromethane complex have been investigated by pulsed‐jet Fourier‐transform microwave spectroscopy. The assigned (most stable) isomer has Cs symmetry and it displays a network of two C? H???Cl? C and one C? H???F? C weak hydrogen bonds, thus suggesting that the former interactions are stronger. The hyperfine structures owing to 35Cl (or 37Cl) quadrupolar effects have been fully resolved, thus leading to an accurate determination of the three diagonal (χgg; g=a, b, c) and the three mixed quadrupole coupling constants (χgg′; g, g′=a, b, c; gg′). Information on the structural parameters of the hydrogen bonds has been obtained. The dissociation energy of the complex has been estimated to be 7.6 kJ mol?1.  相似文献   

6.
(C2H10N2)[BPO4F2] — Strukturbeziehungen zwischen [BPO4F2]2— und [Si2O6]4— Colourless crystals of (C2H10N2)[BPO4F2] were prepared from mixture of ethylendiamine, H3BO3, BF3 · C2H5NH2, H3PO4 and HCl under mild hydrothermal conditions (220 °C). The crystal structure was determined by single crystal methods (triclinic, P1¯ (no. 2), a = 451.85(5) pm, b = 710.20(8) pm, c = 1210.2(2) pm, α = 86.08(1)°, β = 88.52(2)°, γ = 71.74(1)°, Z = 2) and contains infinite tetrahedral zweier‐single‐chains {[BPO4F2]2—} which are isoelectronic (48e) with the polyanions {[Si2O6]4—} of the pyroxene family.  相似文献   

7.
In the structure of bis({N‐[di­methyl(1η5‐2,3,4,6‐tetra­methyl­in­den­yl)­silyl]­cyclo­hexyl­amido‐1κN}(methyl‐3κC)‐di‐μ3‐methyl­ene‐1:2:3κ3C;1:3:3′κ3C‐tris(pentafluorophenyl‐2κC)titanium) benzene disolvate, [Me2Si(η5‐2,3,4,6‐Me4C9H2)(C6H11N)]Ti[(μ3‐CH2)Al(C6F5)3][AlMe(μ3‐CH2)]2 or [Ti2(C21H7AlF15)2(C21H31NSi)2]·2C6D6, the dimer is located on an inversion center, and the two Ti centers are linked by double Ti(μ3‐CH2)Al(C6F5)3AlMe(μ3‐CH2) heterocycles. The electron‐deficient Ti centers are further stabilized by two α‐agostic interactions between Ti and one H atom of each bridging methyl­ene group.  相似文献   

8.
The rate constant of the title reaction is determined during thermal decomposition of di-n-pentyl peroxide C5H11O( )OC5H11 in oxygen over the temperature range 463–523 K. The pyrolysis of di-n-pentyl peroxide in O2/N2 mixtures is studied at atmospheric pressure in passivated quartz vessels. The reaction products are sampled through a micro-probe, collected on a liquid-nitrogen trap and solubilized in liquid acetonitrile. Analysis of the main compound, peroxide C5H10O3, was carried out by GC/MS, GC/MS/MS [electron impact EI and NH3 chemical ionization CI conditions]. After micro-preparative GC separation of this peroxide, the structure of two cyclic isomers (3S*,6S*)3α-hydroxy-6-methyl-1,2-dioxane and (3R*,6S*)3α-hydroxy-6-methyl-1,2-dioxane was determined from 1H NMR spectra. The hydroperoxy-pentanal OHC( )(CH2)2( )CH(OOH)( )CH3 is formed in the gas phase and is in equilibrium with these two cyclic epimers, which are predominant in the liquid phase at room temperature. This peroxide is produced by successive reactions of the n-pentoxy radical: a first one generates the CH3C·H(CH2)3OH radical which reacts with O2 to form CH3CH(OO·)(CH2)3OH; this hydroxyperoxy radical isomerizes and forms the hydroperoxy HOC·H(CH2)2CH(OOH)CH3 radical. This last species leads to the pentanal-hydroperoxide (also called oxo-hydroperoxide, or carbonyl-hydroperoxide, or hydroperoxypentanal), by the reaction HOC·H(CH2)2CH(OOH)CH3+O2→O()CH(CH2)2CH(OOH)CH3+HO2. The isomerization rate constant HOCH2CH2CH2CH(OO·)CH3→HOC·HCH2CH2CH(OOH)CH3 (k3) has been determined by comparison to the competing well-known reaction RO2+NO→RO+NO2 (k7). By adding small amounts of NO (0–1.6×1015 molecules cm−3) to the di-n-pentyl peroxide/O2/N2 mixtures, the pentanal-hydroperoxide concentration was decreased, due to the consumption of RO2 radicals by reaction (7). The pentanal-hydroperoxide concentration was measured vs. NO concentration at ten temperatures (463–523 K). The isomerization rate constant involving the H atoms of the CH2( )OH group was deduced: or per H atom: The comparison of this rate constant to thermokinetics estimations leads to the conclusion that the strain energy barrier of a seven-member ring transition state is low and near that of a six-member ring. Intramolecular hydroperoxy isomerization reactions produce carbonyl-hydroperoxides which (through atmospheric decomposition) increase concentration of radicals and consequently increase atmospheric pollution, especially tropospheric ozone, during summer anticyclonic periods. Therefore, hydrocarbons used in summer should contain only short chains (<C4) hydrocarbons or totally branched hydrocarbons, for which isomerization reactions are unlikely. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 875–887, 1998  相似文献   

9.
Multinuclear solid‐state NMR studies of Cp*2Sc?R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc?Et complex contains a β‐CH agostic interaction. The static central transition 45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc?R bond is different in Cp*2Sc?Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc?CH2CH3 is related to coupling between the filled σC‐C orbital and the vacant orbital.  相似文献   

10.
Multinuclear solid‐state NMR studies of Cp*2Sc−R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc−Et complex contains a β‐CH agostic interaction. The static central transition 45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc−R bond is different in Cp*2Sc−Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc−CH2CH3 is related to coupling between the filled σC‐C orbital and the vacant orbital.  相似文献   

11.
The absolute configuration of the title cis‐(1R,3R,4S)‐pyrrolidine–borane complex, C18H34BNO2Si, was confirmed. Together with the related trans isomers (3S,4S) and (3R,4R), it was obtained unexpectedly from the BH3·SMe2 reduction of the corresponding chiral (3R,4R)‐lactam precursor. The phenyl ring is disordered over two conformations in the ratio 0.65:0.35. The crystallographic packing is dominated by the rarely found donor–acceptor hydroxy–borane O—H...H—B hydrogen bonds.  相似文献   

12.
Two title nido‐11‐vertex platinaundecaboranes, 7,7‐bis‐(triphenylphosphine‐P)‐8, 10‐diethoxy‐8, 9:10, 11‐bis‐μ‐H‐7‐platina‐nido‐undecaborane‐dichloromethane (I) and 7,7‐bis‐(triphenylphosphine‐P) ‐8, 10‐di(i‐propoxy) ‐8,9:10,11‐bis‐μ‐H‐7‐platina‐nido‐undecaborane (II), were prepared and their structures were determined by single crystal X‐ray diffraction method. Each of them has an 11‐vertex nido‐polyhedral skeleton. {PtB10} cage is substituted by two ethoxy or i‐propoxy groups at 8 and 10 positions, respectively.  相似文献   

13.
A kinetic study of the very low-pressure pyrolysis of ethylbenzene (I), 2-phenylethylamine (II), and N,N-dimethyl 2-phenylethylamine (III) above 900 K yields the heats of formation of aminomethyl (A) and N,N-dimethylaminomethyl (B) radicals: ΔH?, 300 K(A) = 30.3 and ΔH?, 300 K(B) = 27.5 kcal/mol. The difference of stabilization energies Es, (relative to methyl radicals): Δ = Es(B) ? Es(A) = (2 ± 1) kcal/mol, conforms to similar effects in methyl substituted alkyl and amino free radicals.  相似文献   

14.
A one‐dimensional aluminum phosphate, [NH3(CH2)2NH2(CH2)3NH3]3+ [Al(PO4)2]3—, has been synthesized hydrothermally in the presence of N‐(2‐Aminoethyl‐)1, 3‐diaminopropane (AEDAP) and its structure determined by single crystal X‐ray diffraction. Crystal data: space group = Pbca (no. 61), a = 16.850(2), b = 8.832(1), c = 17.688(4)Å, V = 2632.4(2)Å3, Z = 8, R1 = 0.0389 [5663 observed reflections with I > 2σ(I)]. The structure consists of anionic [Al(PO4)2]3— chains built up from AlO4 and PO4 tetrahedra, in which all the AlO4 vertices are shared and each PO4 tetrahedron possesses two terminal P=O linkages. The cations, which balances the negative charge of the chains, are located in between the chains and interact with the oxygen atoms through strong N—H···O hydrogen bonds. Additional characterization of the compound by powder XRD and MAS‐NMR has also been performed and described.  相似文献   

15.
Esterification of a single diastereomer of 2‐(4‐methylene­cyclohex‐2‐enyl)propanol, (II), with (1R,4S)‐(+)‐camphanic acid [(1R,4S)‐4,7,7‐trimethyl‐3‐oxo‐2‐oxabicyclo[2.2.1]heptane‐1‐carboxylic acid] leads to the crystalline title compound, C20H28O4. The relative configuration of the camphanate was determined by X‐ray diffraction analysis. The outcome clarifies the relative and absolute stereochemistry of the naturally occurring bisabolane sesquiterpenes β‐turmerone and β‐sesquiphellandrene, since we have converted (II) into both natural products via a stereospecific route.  相似文献   

16.
Isozeaxanthin: Chirality and Enantioselective Synthesis of (4R,4′R)-Isozeaxanthin ((?)-(4R,4′R)-β, β-Carotin-4,4′-diol) The absolute configuration of optically active isozeaxanthin was established by synthesis using (?)-(R)-4-hydroxy-β-ionon ( 2 ) [18] as starting material.  相似文献   

17.
Synthesis of (R)-β, β-Caroten-2-ol and (2R, 2′R)-β, β-Carotene-2,2′-diol Starting from geraniol, the two carotenoids (R)-β, β-caroten-2-ol ( 1 ) and (2R, 2′R)-β, β-carotene-2,2′-diol ( 3 ) were synthesized. The optically active cyclic building block was obtained by an acid-catalysed cyclisation of the epoxide (R)- 4 . The enantiomeric excess of the product was > 95 %.  相似文献   

18.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

19.
The decomposition of dimethyl peroxide (DMP) was studied in the presence and absence of added NO2 to determine rate constants k1 and k2 in the temperature range of 391–432°K: The results reconcile the studies by Takezaki and Takeuchi, Hanst and Calvert, and Batt and McCulloch, giving log k1(sec?1) = (15.7 ± 0.5) - (37.1 ± 0.9)/2.3 RT and k2 ≈ 5 × 104M?1· sec?1. The disproportionation/recombination ratio k7b/k7a = 0.30 ± 0.05 was also determined: When O2 was added to DMP mixtures containing NO2, relative rate constants k12/k7a were obtained over the temperature range of 396–442°K: A review of literature data produced k7a = 109.8±0.5M?1·sec?1, giving log k12(M?1·sec?1) = (8.5 ± 1.5) - (4.0 ± 2.8)/2.3 RT, where most of the uncertainty is due to the limited temperature range of the experiments.  相似文献   

20.
The solvent‐free methyllithium derivatives Li[CH2PR2] (R = tBu, Ph) were prepared via the reaction of CH3PR2 with Li[tBu]. It should be noted that the deprotonation of CH3PtBu2 with Li[tBu] occurred at 60 °C, whereas Li[CH2PPh2] was already formed from CH3PPh2 with Li[tBu] at ambient temperature. The structure determination of di‐tert‐butylphosphanylmethyllithium was performed by high resolution X‐ray powder diffraction analysis at different temperatures. This led to two possible structure solutions with similar quality criteria (space groups Iba2 and I2/a). Therefore CASTEP DFT‐D calculations were applied to verify the correct crystal structure. The solid‐state structure of di‐tert‐butylphosphanylmethyllithium consists of alternating edge‐sharing six‐ and four‐membered rings, which form a polymeric, infinite double‐chain along the crystallographic c axis in the monoclinic space group I2/a. Two Li[CH2PtBu2] units connected via an inversion center form a six‐membered Li2C2P2 ring in the chair conformation. The nearly flat four‐membered Li2C2 ring, is oriented perpendicularly to the twofold axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号