首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Czechoslovak Mathematical Journal - We give a graph theoretic interpretation of r-Lah numbers, namely, we show that the r-Lah number $${leftlfloor {matrix{n cr k cr } } rightrfloor _r}$$...  相似文献   

3.
We determine the flow numbers of signed complete and signed complete bipartite graphs.  相似文献   

4.
5.
6.
A rooted graph is a pair (G, x) where G is a simple undirected graph and x ? V(G). If G if rooted at x, then its rotation number h(G, x) is teh minimum number of edges in a graph F, of the same order as G, such that for all v ? V(F) we can find a copy of G in F with the root x at v. Rotation numbers for complete bipartite graphs were itroduced in [4] by Cockayne and Lorimer. Several cases were evaluated by Bollobás and Cockayne in [2], and in this paper we give a full solution.  相似文献   

7.
We construct a new infinite family of factorizations of complete bipartite graphs by factors all of whose components are copies of a (fixed) complete bipartite graph Kp,q. There are simple necessary conditions for such factorizations to exist. The family constructed here demonstrates sufficiency in many new cases. In particular, the conditions are always sufficient when q=p+1.  相似文献   

8.
Given an ordering of the vertices of a graph around a circle, a page is a collection of edges forming noncrossing chords. A book embedding is a circular permutation of the vertices together with a partition of the edges into pages. The pagenumber t(G) (also called book thickness) is the minimum number of pages in a book embedding of G. We present a general construction showing t(Km,n) ? ?(m + 2n)/4?, which we conjecture optimal. We prove a result suggesting this is optimal for m ? 2n ? 3. For the most difficult case m = n, we consider vertex permutations that are regular, i.e., place vertices from each partite set into runs of equal size. Book embeddings with such orderings require ?(7n ? 2)/9? pages, which is achievable. The general construction uses fewer pages, but with an irregular ordering.  相似文献   

9.
We estimate Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. In particular we determine asymptotically the two and three color Ramsey numbers for grid graphs. More generally, we determine asymptotically the two color Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assumption that the bipartite graph is balanced.  相似文献   

10.
Kreweras’ conjecture [G. Kreweras, Matchings and hamiltonian cycles on hypercubes, Bull. Inst. Combin. Appl. 16 (1996) 87–91] asserts that every perfect matching of the hypercube Qd can be extended to a Hamiltonian cycle of Qd. We [Jiří Fink, Perfect matchings extend to hamilton cycles in hypercubes, J. Combin. Theory Ser. B, 97 (6) (2007) 1074–1076] proved this conjecture but here we present a simplified proof.The matching graph of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle of G. We show that the matching graph of a complete bipartite graph is bipartite if and only if n is even or n=1. We prove that is connected for n even and has two components for n odd, n≥3. We also compute distances between perfect matchings in .  相似文献   

11.
If the edges of a graph G are colored using k colors, we consider the color distribution for this coloring a=(a1,a2,…,ak), in which ai denotes the number of edges of color i for i=1,2,…,k. We find inequalities and majorization conditions on color distributions of the complete bipartite graph Kn,n which guarantee the existence of multicolored subgraphs: in particular, multicolored forests and trees. We end with a conjecture on partitions of Kn,n into multicolored trees.  相似文献   

12.
For any s ≥ 1 and t ≥ (S2), we prove that among all graphs with n vertices the graph that contains the maximal number of induced copies of Kt, t+s for any fixed s ≥ 1 and t ≥ (s2) is K(n/2)+α(n/2)-α for some function α = o(n). We show that this is not valid for t < (s2). Analogous results for complete multipartite graphs are also obtained.  相似文献   

13.
14.
An identity orientation of a graph G=(V,E) is an orientation of some of the edges of E such that the resulting partially oriented graph has no automorphism other than the identity. We show that the complete bipartite graph Ks,t, with st, does not have an identity orientation if t3s-log3(s-1). We also show that if (r+1)(r+2)2s then Ks,3s-r does have an identity orientation. These results improve the previous bounds obtained by Harary and Jacobson (Discuss. Math. - Graph Theory 21 (2001) 158). We use these results to determine exactly the values of t for which an identity orientation of Ks,t exists for 2s17.  相似文献   

15.
16.
A total edge irregular k-labelling ν of a graph G is a labelling of the vertices and edges of G with labels from the set {1,…,k} in such a way that for any two different edges e and f their weights φ(f) and φ(e) are distinct. Here, the weight of an edge g=uv is φ(g)=ν(g)+ν(u)+ν(v), i. e. the sum of the label of g and the labels of vertices u and v. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G.We have determined the exact value of the total edge irregularity strength of complete graphs and complete bipartite graphs.  相似文献   

17.
For a fixed pair of integers r, s ≥ 2, all positive integers m and n are determined which have the property that if the edges of Km,n (a complete bipartite graph with parts n and m) are colored with two colors, then there will always exist a path with r vertices in the first color or a path with s vertices in the second color.  相似文献   

18.
Arooted graph is a pair (G, x), whereG is a simple undirected graph andx V(G). IfG is rooted atx, then itsrotation number h(G, x) is the minimum number of edges in a graphF of the same order asG such that for allv V(F), we can find a copy ofG inF with the rootx atv. Rotation numbers for all complete bipartite graphs are now known (see [2], [4], [7]). In this paper we calculate rotation numbers for complete tripartite graphs with rootx in the largest vertex class.Funded by the Science and Engineering Research Council.  相似文献   

19.
Motivated by Ramsey-type questions, we consider edge-colorings of complete graphs and complete bipartite graphs without rainbow path. Given two graphs G and H, the k-colored Gallai–Ramsey number grk(G:H) is defined to be the minimum integer n such that n2k and for every Nn, every rainbow G-free coloring (using all k colors) of the complete graph KN contains a monochromatic copy of H. In this paper, we first provide some exact values and bounds of grk(P5:Kt). Moreover, we define the k-colored bipartite Gallai–Ramsey number bgrk(G:H) as the minimum integer n such that n2k and for every Nn, every rainbow G-free coloring (using all k colors) of the complete bipartite graph KN,N contains a monochromatic copy of H. Furthermore, we describe the structures of complete bipartite graph Kn,n with no rainbow P4 and P5, respectively. Finally, we find the exact values of bgrk(P4:Ks,t) (1st), bgrk(P4:F) (where F is a subgraph of Ks,t), bgrk(P5:K1,t) and bgrk(P5:K2,t) by using the structural results.  相似文献   

20.
A 4-semiregular 1-factorization is a 1-factorization in which every pair of distinct 1-factors forms a union of 4-cycles. LetK be the complete graphK 2nor the complete bipartite graphK n, n .We prove that there is a 4-semiregular 1-factorization ofK if and only ifn is a power of 2 andn2, and 4-semiregular 1-factorizations ofK are isomorphic, and then we determine the symmetry groups. They are known for the case of the complete graphK 2n ,however, we prove them in a different method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号