首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm whales (Physeter macrocephalus) produce multipulsed clicks with their hypertrophied nasal complex. The currently accepted view of the sound generation process is based on the click structure measured directly in front of, or behind, the whale where regular interpulse intervals (IPIs) are found between successive pulses in the click. Most sperm whales, however, are recorded with the whale in an unknown orientation with respect to the hydrophone where the multipulse structure and the IPI do not conform to a regular pulse pattern. By combining far-field recordings of usual clicks with acoustic and orientation information measured by a tag on the clicking whale, we analyzed clicks from known aspects to the whale. We show that a geometric model based on the bent horn theory for sound production can explain the varying off-axis multipulse structure. Some of the sound energy that is reflected off the frontal sac radiates directly into the water creating an intermediate pulse p1/2 seen in off-axis recordings. The powerful p1 sonar pulse exits the front of the junk as predicted by the bent-horn model, showing that the junk of the sperm whale nasal complex is both anatomically and functionally homologous to the melon of smaller toothed whales.  相似文献   

2.
Sperm whales generate transient sounds (clicks) when foraging. These clicks have been described as echolocation sounds, a result of having measured the source level and the directionality of these signals and having extrapolated results from biosonar tests made on some small odontocetes. The authors propose a passive acoustic technique requiring only one hydrophone to investigate the acoustic behavior of free-ranging sperm whales. They estimate whale pitch angles from the multipath distribution of click energy. They emphasize the close bond between the sperm whale's physical and acoustic activity, leading to the hypothesis that sperm whales might, like some small odontocetes, control click level and rhythm. An echolocation model estimating the range of the sperm whale's targets from the interclick interval is computed and tested during different stages of the whale's dive. Such a hypothesis on the echolocation process would indicate that sperm whales echolocate their prey layer when initiating their dives and follow a methodic technique when foraging.  相似文献   

3.
In an earlier paper [Nosal and Frazer Appl. Acoust. 61, 1187-1201 (2006)], a sperm whale was tracked in three-dimensions using direct and surface-reflected time differences (DRTD) of clicks recorded on five bottom-mounted hydrophones, a passive method that is robust to timing errors between hydrophones. This paper refines the DRTD method and combines it with a time of (direct) arrival method to improve the accuracy of the track. The position and origin time of each click having been estimated, pitch and yaw are then obtained by assuming the main axis of the whale is tangent to the track. Roll is then found by applying the bent horn model of sperm whale phonation, in which each click is composed of two pulses, p0 and p1, that exit the whale at different points. With instantaneous pitch, roll, and yaw estimated from time differences, amplitudes are then used to estimate the beam patterns of the p0 and p1 pulses. The resulting beam patterns independently confirm those obtained by Zimmer et al. [J. Acoust. Soc. Am. 117, 1473-1485 (2005); 118, 3337-3345 (2005)] with a very different experimental setup. A method for estimating relative click levels is presented and used to find that click levels decrease toward the end of a click series, prior to the "creak" associated with prey capture.  相似文献   

4.
Sperm whales (Physeter macrocephalus) emit short, broadband clicks which often include multiple pulses. The time interval between these pulses [inter-pulse interval (IPI)] represents the two-way time for a pulse to travel between the air sacs located at either end of the sperm whale's head. The IPI therefore, is a proxy of head length which, using an allometric relationship, can be used to estimate total body length. Previous studies relating IPI to an independent measure of length have relied on very small sample sizes and manual techniques for measuring IPI. Sound recordings and digital stereo photogrammetric measurements of 21 individuals were made off Kaikoura, New Zealand, and, in addition, archived recordings of whales measured with a previous photogrammetric system were reanalyzed to obtain a total sample size of 33 individuals. IPIs were measured automatically via cepstral analysis implemented via a software plug-in for pamguard, an open-source software package for passive acoustic monitoring. IPI measurements were highly consistent within individuals (mean CV=0.63%). The new regression relationship relating IPI (I) and total length (T) was found to be T=1.258I+5.736 (r(2)=0.77, p<0.001). This new regression provides a better fit than previous studies of large (> 11 m) sperm whales.  相似文献   

5.
This paper investigates the applicability to sperm whales of the theory of sound radiating from a piston. The theory is applied to a physical model and to a series of sperm whale clicks. Results show that wave forms of off-axis signals can be reproduced by convolving an on-axis signal with the spatial impulse response of a piston. The angle of a recorded click can be estimated as the angle producing the spatial impulse response that gives the best match with the observation when convolved with the on-axis wave form. It is concluded that piston theory applies to sperm whale sonar click emission.  相似文献   

6.
Traditionally, sperm whale clicks have been described as multipulsed, long duration, nondirectional signals of moderate intensity and with a spectrum peaking below 10 kHz. Such properties are counterindicative of a sonar function, and quite different from the properties of dolphin sonar clicks. Here, data are presented suggesting that the traditional view of sperm whale clicks is incomplete and derived from off-axis recordings of a highly directional source. A limited number of assumed on-axis clicks were recorded and found to be essentially monopulsed clicks, with durations of 100 micros, with a composite directionality index of 27 dB, with source levels up to 236 dB re: 1 microPa (rms), and with centroid frequencies of 15 kHz. Such clicks meet the requirements for long-range biosonar purposes. Data were obtained with a large-aperture, GPS-synchronized array in July 2000 in the Bleik Canyon off Vester?len, Norway (69 degrees 28' N, 15 degrees 40' E). A total of 14 h of sound recordings was collected from five to ten independent, simultaneously operating recording units. The sound levels measured make sperm whale clicks by far the loudest of sounds recorded from any biological source. On-axis click properties support previous work proposing the nose of sperm whales to operate as a generator of sound.  相似文献   

7.
A number of observations show that sperm whales (Physeter catodon L. 1758) react to various man-made pulses with moderate source levels. The behavioral responses are described to vary from silence to fear. Click rates of five submerged male sperm whales were measured during the discharge of eight detonators off Andenes, northern Norway. In addition, the behavioral response of a surfaced specimen was observed. Click rates of the submerged whales and the behavior of the surfaced specimen did not change during the discharges with received sound levels of some 180 dB re 1 microPa peRMS. The apparent lack of response to the discharges could be due to similarity between sperm whale clicks and detonations. Accordingly, it can be speculated that the discharges may have been perceived as isolated clicks from conspecifics.  相似文献   

8.
The automated real-time detection and classification of cetacean and anthropogenic sounds from deep-sea observatories can play a key role to study cetaceans in the field, to quantify the impact of anthropogenic sounds or to initiate mitigation measures during potentially harmful human activities. In the area of the NEMO-ONDE deep-sea observatory, sperm whales are often present together with heavy shipping. The spatial coincidence of both sound sources allows for the long term monitoring of their interaction. Some ships produce impulsive sounds and the automated separation of these impulses from sperm whale clicks is not a trivial task. As part of a detection, classification and localisation system for acoustic data from marine observatories, we present four modules performing the automated real-time classification of clicks from sperm whales and impulsive sounds produced by ships. First, two modules detect segments that contain impulsive sounds within a specifiable frequency band and return the impulses’ positions. Then, two modules classify the detected impulses as sperm whale clicks or ship impulses. Finally, at the level of 22 s segments, the classification outputs from individual impulses are combined into a decision on the presence of sperm whale clicks or ship impulses. The modules’ reliability was tested on data from the NEMO-ONDE observatory. Training and testing data were separated by more than 2 months, enabling to assess the consistency of the predictions over the long term. The automated separation between segments of the two classes was high with area under the ROC curve (AUC) values between 0.94 and 0.98.  相似文献   

9.
Sperm whale clicks are characterized by a multi-pulsed structure. The time lag between consecutive pulses, i.e., the inter-pulse interval (IPI), is related to the size of the sound production organ such that its measurement provides a means to acoustically estimate the size of individual whales. Due to off-axis effects the identification of pulses is, however, not always straightforward, and automatic measurement methods provide not only more objective estimation, but may also facilitate IPI estimation in cases where single click measurements are ambiguous. In particular, averaging measurements over a time series of clicks from the same whale could enhance the discrimination of time invariant pulses. The authors developed two automatic methods of automatic IPI measurement based on waveform and autocorrelation averaging and compared their accuracy and consistency with other previously used methods. Manual measurement by an experienced operator provided the most self-consistent estimates. The autocorrelation averaging technique had the best overall performance of the automated methods achieving a very similar performance to manual measurement. On some recordings cepstrum averaging methods converged when autocorrelation did not. Therefore, applying both of these automated methods and choosing the best of the two are recommended.  相似文献   

10.
Analysis of the usual click rates of sperm whales (Physeter macrocephalus) at Kaikoura, New Zealand, confirms the potential for assessing abundance via "click counting." Usual click rates over three dive cycles each of three photographically identified whales showed that 5 min averages of usual click rate did not differ significantly within dives, among dives of the same whale or among whales. Over the nine dives (n= 13 728 clicks) mean usual click rate was 1.272 clicks s(-1) (95% CI= 0.151). On average, individual sperm whales at Kaikoura spent 60% of their time usual clicking in winter and in summer. There was no evidence that whale identity or stage of the dive recorded affects significantly the percentage of time spent usual clicking. Differences in vocal behavior among sperm whale populations worldwide indicate that estimates of abundance that are based on click rates need to based on data from the population of interest, rather than from another population or some global average.  相似文献   

11.
The source characteristics of biosonar signals from sympatric killer whales and long-finned pilot whales in a Norwegian fjord were compared. A total of 137 pilot whale and more than 2000 killer whale echolocation clicks were recorded using a linear four-hydrophone array. Of these, 20 pilot whale clicks and 28 killer whale clicks were categorized as being recorded on-axis. The clicks of pilot whales had a mean apparent source level of 196 dB re 1 μPa pp and those of killer whales 203 dB re 1 μPa pp. The duration of pilot whale clicks was significantly shorter (23 μs, S.E.=1.3) and the centroid frequency significantly higher (55 kHz, S.E.=2.1) than killer whale clicks (duration: 41 μs, S.E.=2.6; centroid frequency: 32 kHz, S.E.=1.5). The rate of increase in the accumulated energy as a function of time also differed between clicks from the two species. The differences in duration, frequency, and energy distribution may have a potential to allow for the distinction between pilot and killer whale clicks when using automated detection routines for acoustic monitoring.  相似文献   

12.
Some bioacousticians have used a single hydrophone to calculate the depth/range of phonating diving animals. The standard one-hydrophone localization method uses multipath transmissions (direct path, sea surface, and seafloor reflections) of the animal phonations as a substitute for a vertical hydrophone array. The standard method requires three multipath transmissions per phonation. Bioacousticians who study foraging sperm whales usually do not have the required amount of multipath transmissions. However, they usually detect accurately (using shallow hydrophones towed by research vessels) direct path transmissions and sea surface reflections of sperm whale phonations (clicks). Sperm whales emit a few thousand clicks per foraging dive, therefore researchers have this number of direct path transmissions and this number of sea surface reflections per dive. The author describes a Bayesian method to combine the information contained in those acoustic data plus visual observations. The author's tests using synthetic data show that the accurate estimation of the depth/range of sperm whales is possible using a single hydrophone and without using any seafloor reflections. This method could be used to study the behavior of sperm whales using a single hydrophone in any location no matter what the depth, the relief, or the constitution of the seafloor might be.  相似文献   

13.
This study demonstrated the ability of a false killer whale (Pseudorca crassidens) to discriminate between two targets and investigated the parameters of the whale's emitted signals for changes related to test conditions. Target detection performance comparable to the bottlenose dolphin's (Tursiops truncatus) has previously been reported for echolocating false killer whales. No other echolocation capabilities have been reported. A false killer whale, naive to conditioned echolocation tasks, was initially trained to detect a cylinder in a "go/no-go" procedure over ranges of 3 to 8 m. The transition from a detection task to a discrimination task was readily achieved by introducing a spherical comparison target. Finally, the cylinder was successfully compared to spheres of two different sizes and target strengths. Multivariate analyses were used to evaluate the parameters of emitted signals. Duncan's multiple range tests showed significant decreases (df = 185, p less than 0.05) in both source level and bandwidth in the transition from detection to discrimination. Analysis of variance revealed a significant decrease in the number of clicks over test conditions [F(5.26) = 5.23, p less than 0.0001]. These data suggest that the whale relied on cues relevant to target shape as well as target strength, that changes in source level and bandwidth were task-related, that the decrease in clicks was associated with learning experience, and that Pseudorca's ability to discriminate shapes using echolocation may be comparable to that of Tursiops truncatus.  相似文献   

14.
The biosonar pulses from free-ranging northern bottlenose whales (Hyperoodon ampullatus) were recorded with a linear hydrophone array. Signals fulfilling criteria for being recorded close to the acoustic axis of the animal (a total of 10 clicks) had a frequency upsweep from 20 to 55 kHz and durations of 207 to 377 μs (measured as the time interval containing 95% of the signal energy). The source level of these signals, denoted pulses, was 175-202 dB re 1 μPa rms at 1 m. The pulses had a directionality index of at least 18 dB. Interpulse intervals ranged from 73 to 949 ms (N?=?856). Signals of higher repetition rates had interclick intervals of 5.8-13.1 ms (two sequences, made up of 59 and 410 clicks, respectively). These signals, denoted clicks, had a shorter duration (43-200 μs) and did not have the frequency upsweep characterizing the pulses of low repetition rates. The data show that the northern bottlenose whale emits signals similar to three other species of beaked whale. These signals are distinct from the three other types of biosonar signals of toothed whales. It remains unclear why the signals show this grouping, and what consequences it has on echolocation performance.  相似文献   

15.
A three-dimensional localization method for tracking sperm whales with as few as one sensor is demonstrated. Based on ray-trace acoustic propagation modeling, the technique exploits multipath arrival information from recorded sperm whale clicks and can account for waveguide propagation physics like interaction with range-dependent bathymetry and ray refraction. It also does not require ray identification (i.e., direct, surface reflected) while utilizing individual ray arrival information, simplifying automation efforts. The algorithm compares the arrival pattern from a sperm whale click to range-, depth-, and azimuth-dependent modeled arrival patterns in order to estimate whale location. With sufficient knowledge of azimuthally dependent bathymetry, a three-dimensional track of whale motion can be obtained using data from a single hydrophone. Tracking is demonstrated using data from acoustic recorders attached to fishing anchor lines off southeast Alaska as part of efforts to study sperm whale depredation of fishing operations. Several tracks of whale activity using real data from one or two hydrophones have been created, and three are provided to demonstrate the method, including one simultaneous visual and acoustic localization of a sperm whale actively clicking while surfaced. The tracks also suggest that whales' foraging is shallower in the presence of a longline haul than without.  相似文献   

16.
Sounds from Longman's beaked whale, Indopacetus pacificus, were recorded during shipboard surveys of cetaceans surrounding the Hawaiian Islands archipelago; this represents the first known recording of this species. Sounds included echolocation clicks and burst pulses. Echolocation clicks were grouped into three categories, a 15 kHz click (n?=?106), a 25 kHz click (n?=?136), and a 25 kHz pulse with a frequency-modulated upsweep (n?=?70). The 15 and 25 kHz clicks were relatively short (181 and 144 ms, respectively); the longer 25 kHz upswept pulse was 288 ms. Burst pulses were long (0.5 s) click trains with approximately 240 clicks/s.  相似文献   

17.
Low-frequency vocalizations were recorded from fin whales, Balaenoptera physalus, in the Gulf of California, Mexico, during three cruises. In March 1985, recorded 20-Hz pulses were in sequences of regular 9-s interpulse intervals. In August 1987, nearly all were in sequences of doublets with alternating 5- and 18-s interpulse intervals. No 20-Hz pulse sequences of any kind were detected in February 1987. The typical pulse modulated from 42 to 20 Hz and its median duration was 0.7 s (1985 data). Most other fin whale sounds were also short tonal pulses averaging 82, 56, and 68 Hz, respectively, for the three cruises; 89% were modulated in frequency, mostly downward. Compared to Atlantic and Pacific Ocean regions, Gulf of California 20-Hz pulses were unique in terms of frequency modulation, interpulse sound levels, and temporal patterns. Fin whales in the Gulf may represent a regional stock revealed by their sound characteristics, a phenomenon previously shown for humpback whales, birds, and fish. Regional differences in fin whale sounds were found in comparisons of Atlantic and Pacific locations.  相似文献   

18.
The energy ratio mapping algorithm (ERMA) was developed to improve the performance of energy-based detection of odontocete echolocation clicks, especially for application in environments with limited computational power and energy such as acoustic gliders. ERMA systematically evaluates many frequency bands for energy ratio-based detection of echolocation clicks produced by a target species in the presence of the species mix in a given geographic area. To evaluate the performance of ERMA, a Teager-Kaiser energy operator was applied to the series of energy ratios as derived by ERMA. A noise-adaptive threshold was then applied to the Teager-Kaiser function to identify clicks in data sets. The method was tested for detecting clicks of Blainville's beaked whales while rejecting echolocation clicks of Risso's dolphins and pilot whales. Results showed that the ERMA-based detector correctly identified 81.6% of the beaked whale clicks in an extended evaluation data set. Average false-positive detection rate was 6.3% (3.4% for Risso's dolphins and 2.9% for pilot whales).  相似文献   

19.
In sperm whales (Physeter catodon L. 1758) the nose is vastly hypertrophied, accounting for about one-third of the length or weight of an adult male. Norris and Harvey [in Animal Orientation and Navigation, NASA SP-262 (1972), pp. 397-417] ascribed a sound-generating function to this organ complex. A sound generator weighing upward of 10 tons and with a cross-section of 1 m is expected to generate high-intensity, directional sounds. This prediction from the Norris and Harvey theory is not supported by published data for sperm whale clicks (source levels of 180 dB re 1 microPa and little, if any, directionality). Either the theory is not borne out or the data is not representative for the capabilities of the sound-generating mechanism. To increase the amount of relevant data, a five-hydrophone array, suspended from three platforms separated by 1 km and linked by radio, was deployed at the slope of the continental shelf off Andenes, Norway, in the summers of 1997 and 1998. With this system, source levels up to 223 dB re 1 microPa peRMS were recorded. Also, source level differences of 35 dB for the same click at different directions were seen, which are interpreted as evidence for high directionality. This implicates sonar as a possible function of the clicks. Thus, previously published properties of sperm whale clicks underestimate the capabilities of the sound generator and therefore cannot falsify the Norris and Harvey theory.  相似文献   

20.
Transmitted biosonar pulses, and the brain auditory evoked potentials (AEPs) associated with those pulses, were synchronously recorded in a false killer whale Pseudorca crassidens trained to accept suction-cup EEG electrodes and to detect targets by echolocation. AEP amplitude was investigated as a function of the transmitted biosonar pulse source level. For that, a few thousand of the individual AEP records were sorted according to the spontaneously varied amplitude of synchronously recorded biosonar pulses. In each of the sorting bins (in 5-dB steps) AEP records were averaged to extract AEP from noise; AEP amplitude was plotted as a function of the biosonar pulse source level. For comparison, AEPs were recorded to external (in free field) sound pulses of a waveform and spectrum similar to those of the biosonar pulses; amplitude of these AEPs was plotted as a function of sound pressure level. A comparison of these two functions has shown that, depending on the presence or absence of a target, the sensitivity of the whale's hearing to its own transmitted biosonar pulses was 30 to 45 dB lower than might be expected in a free acoustic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号