首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photostability and photophysical parameters of an aqueous solution of the mycosporine-like amino acid (MAA) porphyra-334 have been determined. The excited-singlet state lifetime, measured by time-correlated single photon counting, was 0.4 ns. Laser flash photolysis experiments at 355 nm did not show any transient species. The triplet state of porphyra-334 was sensitized by triplet-triplet energy transfer. The T-T absorption spectrum was determined and the maximal absorption coefficient at 440 nm was estimated to be 1 x 10(4) M(-1) cm(-1). In this way an upper limit for the intersystem crossing quantum yield was determined. The very low quantum yield of fluorescence (phiF = 0.0016) and triplet formation (phiT < 0.05) together with a photodecomposition quantum yield of 2-4 x 10(-4), in the absence and the presence of oxygen respectively, can be explained by a very fast internal conversion process. These results support the photoprotective role assigned to this MAA in living systems.  相似文献   

2.
Abstract— Octa-aL-alkyloxy-substituted Zn-phthalocyanines are an interesting class of far red-absorbing photosensitizers. The chemical structure, the calculated steric conformation, the observed linear optical properties and an anomalous luminescence from a higher than S, excited state are reported. To study the optical properties of higher excited states and their occupation dynamics up to delay times of 15 ns we have carried out measurements of transient absorption spectra after 14 ps pulsed, resonant B-band and Q-band excitation. From these measurements the excited state singlet-singlet and triplet-triplet spectra as well as the intersystem crossing (ISC) quantum yields are obtained. The main result is an excitation wavelength-dependent ISC quantum yield that can be explained by an additional ISC channel between higher excited singlet and triplet states. The large rate of this channel is justified by the resonance between higher triplet states, observed in the triplet-triplet spectrum and the B, absorption band. Using kinetic model calculations, a lifetime of the higher excited singlet state of some picoseconds is predicted and the influence of a two-step absorption process on the population density of this higher excited singlet state is discussed.  相似文献   

3.
We prepared a N^N Pt(II) bisacetylide complex that has strong absorption of visible light (molar absorption coefficients ϵ=6.7×104 M−1 cm−1 at 570 nm), and the singlet oxygen quantum yield (ΦΔ) is up to 78 %. Femtosecond transient absorption spectra show the intersystem crossing (ISC) of the complex takes 81.8 ps, nanosecond transient absorption spectra show the triplet excited state lifetime is 7.6 μs. Density functional theory (DFT) computation demonstrated that the S1 and T1 states are mainly localized on the perylenemonoimide (PMI) ligands, although the involvement of the Pt(II) centre is noticeable. The complex was used as triplet photosensitizer to generate delayed fluorescence with perylenebisimide (PBI) as the triplet state energy acceptor and emitter, via the intermolecular triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA), the delayed fluorescence lifetime is up to 52.5 μs under the experimental conditions.  相似文献   

4.
Visible light-harvesting C(60)-bodipy dyads were devised as universal organic triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion. The antennas in the dyad were used to harvest the excitation energy, and then the singlet excited state of C(60) will be populated via the intramolecular energy transfer from the antenna to C(60) unit. In turn with the intrinsic intersystem crossing (ISC) of the C(60), the triplet excited state of the C(60) will be produced. Thus, without any heavy atoms, the triplet excited states of organic dyads are populated upon photoexcitation. Different from C(60), the dyads show strong absorption of visible light at 515 nm (C-1, ε = 70400 M(-1) cm(-1)) or 590 nm (C-2, ε = 82500 M(-1) cm(-1)). Efficient intramolecular energy transfer from the bodipy moieties to C(60) unit and localization of the triplet excited state on C(60) were confirmed by steady-state and time-resolved spectroscopy as well as DFT calculations. The dyads were used as triplet photosensitizers for TTA upconversion, and an upconversion quantum yield up to 7.0% was observed. We propose that C(60)-organic chromophore dyads can be used as a general molecular structural motif for organic triplet photosensitizers, which can be used for photocatalysis, photodynamic therapy, and TTA upconversions.  相似文献   

5.
Spectroscopic and photophysical properties of safranine O (Sf) were investigated in binary water/solvent mixtures. It was found that these properties are strongly solvent-dependent. A blue shift is observed for both the ground-state absorption and the triplet-triplet main absorption band when the solvent polarity augments. At the same time a red shift of the fluorescence emission band takes place. These facts are interpreted in terms of higher dipole moment of the dye molecule in the S(1) state as compared with the S(0) state, while a decrease in the dipole moment of the triplet state T(n) with respect to the triplet state T(1) occurs. The Stokes' shift and the fluorescence lifetime shows a linear correlation with the E(T)(30) parameter, while a non-linear behavior is observed when a correlation with models of a continuous dielectric solvent is attempted. These results suggest the operation of strong specific interactions of Sf with solvent molecules, most likely hydrogen bonding. From fluorescence lifetime and quantum yield determinations, as well as intersystem-crossing quantum yields, the solvent dependence of the photophysical kinetic parameters were obtained. The radiative fluorescence rate constant can be adequately reproduced by calculations based on the UV-Vis absorption and emission spectra, as given by the Strickler-Berg equation.  相似文献   

6.
We have explored the photogeneration of the coumarin 314 radical cation by using nanosecond laser excitation at wavelengths longer than 400 nm in benzene, acetonitrile, dichloromethane, and aqueous media. In addition, time-resolved absorption spectroscopy measurements allowed detection of the triplet excited state of coumarin 314 (C(314)) with a maximum absorption at 550 nm in benzene. The triplet excited state has a lifetime of 90 μs in benzene. It is readily quenched by oxygen (k(q) = 5.0 × 10(9) M(-1) s(-1)). From triplet-triplet energy transfer quenching experiments, it is shown that the energy of this triplet excited state is higher than 35 kcal/mol, in accord with the relatively large singlet oxygen quantum yield (Φ(Δ) = 0.25). However, in aqueous media, the coumarin triplet was no longer observed, and instead of that, a long-lived (160 μs in air-equilibrated solutions) free radical cation with a maximum absorbance at 370 nm was detected. The free radical cation generation, which has a quantum yield of 0.2, occurs by electron photoejection. Moreover, density functional theory (DFT) calculations indicate that at least 40% of the electronic density is placed on the nitrogen atom in aqueous media, which explains its lack of reactivity toward oxygen. On the other hand, rate constant values close to the diffusion rate limit in water (>10(9) M(-1) s(-1)) were found for the quenching of the C(314) free radical cation by phenolic antioxidants. The results have been interpreted by an electron-transfer reaction between the phenolic antioxidant and the radical cation where ion pair formation could be involved.  相似文献   

7.
Several important photophysical properties of the cyanine dye Cy3 have been determined by laser flash photolysis. The triplet-state absorption and photoisomerization of Cy3 are distinguished by using the heavy-atom effects and oxygen-induced triplet --> triplet energy transfer. Furthermore, the triplet-state extinction coefficient and quantum yield of Cy3 are also measured via triplet-triplet energy-transfer method and comparative actinometry, respectively. It is found that the triplet --> triplet (T1-->Tn) absorptions of trans-Cy3 largely overlap the ground-state absorption of cis-Cy3. Unlike what occurred in Cy5, we have not observed the triplet-state T1-->Tn absorption of cis-Cy3 and the phosphorescence from triplet state of cis-Cy3 following a singlet excitation (S0-S1) of trans-Cy3, indicating the absence of a lowest cis-triplet state as an isomerization intermediate upon excitation in Cy3. The detailed spectra of Cy3 reported in this paper could help us interpret the complicated photophysics of cyanine dyes.  相似文献   

8.
The rhenium(I) and ruthenium(II) complexes of a fullerene-substituted bipyridine ligand have been prepared. Electrochemical studies indicate that some ground state electronic interaction between the fullerene subunit and the metal-complexed moiety are present in the Re(I) but not the Ru(II) complex. The photophysical properties have been investigated by steady-state and time-resolved UV/Vis-NIR luminescence spectroscopy and nanosecond laser flash photolysis in CH2Cl2 solution, and compared to those of the corresponding model compounds. Excitation of the methanofullerene moiety in the dyads does not lead to excited state intercomponent interactions. Instead, excitation of the metal-complexed unit shows that the lowest triplet metal-to-ligand-charge-transfer excited state ((3)MLCT) centered on the Re(I)- or Ru(II)-type unit is quenched with a rate constant of about 2.5 x 10(8) s(-1). The quenching is attributed to an electron-transfer (ElT) process leading to the reduction of the carbon sphere, as determined by luminescence spectroscopy for the Ru(II) dyad. Experimental detection of electron transfer in the Re(I) dyad is prevented due to the unfavorable absorption of the metal-complexed moiety relative to the fullerene unit. However, it can be postulated on the basis of energetic/kinetic arguments and by comparison with the Ru(II)-type array. The primary ElT process is followed by charge-recombination to give the lowest-lying fullerene triplet excited state (3C60) with quantitative yield, as determined by sensitized singlet oxygen luminescence experiments. Direct (3)MLCT-->3C60 triplet-triplet energy-transfer (EnT) does not successfully compete with ElT since it is highly exoergonic and located in the Marcus inverted region. The quantum yield of singlet oxygen sensitization (Phi(delta)) of the Re(I)-based dyad is found to be lower (0.80) than for the corresponding Ru(II) derivative (1.0). This is likely to be the consequence of different conformational structures for the two dyads, rather than a different yield of 3C60 formation.  相似文献   

9.
Spectroscopic properties of a new family of acridinedione dyes are reported. The absorption and fluorescence spectra of the different substituted acridinediones have been recorded in different solvents and the difference in the dipole moment between ground and excited state has been obtained by solvatochromic shift method. The value of the Onsager cavity radius was calculated from the total surface area using software PCMODEL. Fluorescence quantum yield and fluorescence lifetime were determined. Radiative and non-radiative constants have been calculated. The triplet-triplet absorption maxima and triplet lifetime show variation depending on the substitution.  相似文献   

10.
The recently discovered [5,6]-open isomer of C(60)O has been found to undergo facile dimerization to form a new C(2) symmetry isomer of C(120)O(2), which can be photodissociated with relatively high efficiency to regenerate monomeric [5,6]-C(60)O. High yield dimerization of [5,6]-C(60)O proceeds spontaneously in toluene solution near room temperature. On the basis of (13)C NMR spectroscopy, ab initio quantum computations, and HPLC retention patterns, the resulting C(120)O(2) product has been deduced to be a nonpolar dimer of C(2) symmetry in which the C(60)O moieties are linked by two single bonds between sp(3)-hybridized carbon atoms adjacent to oxygen atoms. Photophysical properties of this dimer have also been measured and compared to those of C(120), the [2 + 2]-dimer of C(60). The ground-state absorption spectrum of C(120)O(2) in toluene is slightly red-shifted relative to that of C(120), with a distinctive peak at 329 nm and an S(1)-S(0) origin band at 704 nm. Its fluorescence spectrum shows two major peaks at 718 and 793 nm. In room-temperature toluene, the measured triplet state intrinsic lifetime of this C(120)O(2) isomer is 34 +/- 2 micros, a value somewhat shorter than that of C(120) (44 micros). C(120)O(2) undergoes photodissociation from its triplet state to regenerate monomeric [5,6]-C(60)O with quantum yields of 2.5% at 24 degrees C and 43% at 70 degrees C. It can therefore serve as a stable reactant for photolytic production of [5,6]-C(60)O. As a simple fullerene adduct that reacts under mild conditions, [5,6]-C(60)O may prove useful in special synthetic applications. Solutions of [5,6]-C(60)O are also unique because they can provide mixtures of a fullerene monomer and its dimer in a dynamic balance controllable by adjustment of concentration, temperature, and optical irradiation.  相似文献   

11.
Silicon phthalocyanine (SiPc) with two axially attached morpholine (MP) units was prepared, and its photophysics was studied by laser flash photolysis, steady state and time-resolved fluorescence methods. Both the fluorescence efficiency and lifetime of SiPc moiety were remarkably quenched, because of the efficient intramolecular photoinduced electron transfer (PET) from morpholine donors to SiPc moiety. The generated charge separation state (CSS), SiPc(?-)-MP(?+), which was observed by transient absorption spectra, showed a lifetime of 4.8 ns. The triplet quantum yield of SiPc unit in the supra-molecule is unexpectedly high, and the predominant spectral signal in microsecond-scale is triplet-triplet (T(1)-T(n)) absorption. This high triplet yield is due to the charge recombination of CSS that generates T(1) in 32% efficiency: SiPc(?-)-MP(?+) → (3)SiPc-MP. The T(1) formation process occurred efficiently because the CSS SiPc(?-)-MP(?+) has a higher energy (1.65 eV) than that of the triplet state (3)SiPc-MP (1.0 eV). Emission from the CSS was also observed: SiPc(?-)-MP(?+) → SiPc-MP + hν'.  相似文献   

12.
Orthogonal phenoxazine-styryl BODIPY compact electron donor/acceptor dyads were prepared as heavy atom-free triplet photosensitizers (PSs) with strong red light absorption (ϵ=1.33×105 M−1 cm−1 at 630 nm), whereas the previously reported triplet photosensitizers based on the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism show absorption in a shorter wavelength range (<500 nm). More importantly, a long-lived triplet state (τT=333 μs) was observed for the new dyads. In comparison, the triplet state lifetime of the same chromophore accessed with the conventional heavy atom effect (HAE) is much shorter (τT=1.8 μs). Long triplet state lifetime is beneficial to enhance electron or energy transfer, the primary photophysical processes in the application of triplet PSs. Our approach is based on SOCT-ISC, without invoking of the HAE, which may shorten the triplet state lifetime. We used bisstyrylBodipy both as the electron acceptor and the visible light-harvesting chromophore, which shows red-light absorption. Femtosecond transient absorption spectra indicated the charge separation (109 ps) and SOCT-ISC (charge recombination, CR; 2.3 ns) for BDP-1 . ISC efficiency of BDP-1 was determined as ΦT=25 % (in toluene). The dyad BDP-3 was used as triplet PS for triplet-triplet annihilation upconversion (upconversion quantum yield ΦUC=1.5 %; anti-Stokes shift is 5900 cm−1).  相似文献   

13.
A fullerene derivative (5) in which a dinuclear ruthenium complex is covalently linked to a fulleropyrrolidine (FP) through a rigid spacer has been prepared through azomethine ylide cycloaddition to C60. Electrochemical and photophysical studies revealed that ground-state electronic interactions between the bimetallic ruthenium chromophore and the FP moiety are small. The absorption spectrum of 5 displays a metal-to-ligand charge transfer (MLCT) transition at about 620 nm in CH2Cl2 which is shifted by nearly 160 nm relative to that of a previously reported mononuclear dyad (8). The photophysical investigations have also shown that both in dichloromethane and acetonitrile the photoexcited MLCT state of dyad 5 transforms into the fullerene triplet excited state with a quantum yield of 0.19 and that, contrary to mononuclear dyad 8, electron transfer, if any under the applied conditions, is negligible relative to energy transfer.  相似文献   

14.
The preparation of rhenium(I) tricarbonyl polypyridine complexes that show a strong absorption of visible light and long-lived triplet excited state and the application of these complexes as triplet photosensitizers for triplet-triplet annihilation (TTA) based upconversion are reported. Imidazole-fused phenanthroline was used as the N^N coordination ligand, on which different aryl groups were attached (Phenyl, Re-0; Coumarin, Re-1 and naphthyl, Re-2). Re-1 shows strong absorption of visible light (ε = 60,800 M(-1) cm(-1) at 473 nm). Both Re-1 and Re-2 show long-lived T(1) states (lifetime, τ(T), is up to 86.0 μs and 64.0 μs, respectively). These properties are in contrast to the weak absorption of visible light and short-lived triplet excited states of the normal rhenium(I) tricarbonyl polypyridine complexes, such as Re-0 (ε = 5100 M(-1) cm(-1) at 439 nm, τ(T) = 2.2 μs). The photophysical properties of the complexes were fully studied with steady state and time-resolved absorption and emission spectroscopes, as well as DFT calculations. The intra-ligand triplet excited state is proposed to be responsible for the exceptionally long-lived T(1) states of Re-1 and Re-2. The Re(I) complexes were used as triplet photosensitizers for TTA based upconversion and an upconversion quantum yield up to 17.0% was observed.  相似文献   

15.
The first system containing a luminescent Ir(m) cyclometallated species and a functionalized C60 unit has been prepared; triplet-triplet energy transfer from the Ir-based MLCT state to the C60 triplet state occurs, leading to phosphorescence (lifetime, 4.8 ms) of the derivatized-C60 at 77 K.  相似文献   

16.
A series of four subphthalocyanine-C(60) fullerene dyads have been prepared through axial functionalization of the macrocycle with m-hydroxybenzaldehyde and a subsequent dipolar cycloaddition reaction. The subphthalocyanine moiety has been peripherally functionalized with substituents of different electronic character, namely fluorine or iodine atoms and ether or amino groups, thus reaching a control over its electron-donating properties. This is evidenced in cyclic voltammetry experiments by a progressive shift to lower potentials, by ca. 200 mV, of the first oxidation event of the SubPc unit in the dyads. As a consequence, the energy level of the SubPc(*)(+)-C(60)(*)(-) charge-transfer state may be tuned so as to compete with energy transfer deactivation pathways upon selective excitation of the SubPc component. For instance, excitation of those systems where the level of the radical pair lies high in energy triggers a sequence of exergonic photophysical events that comprise (i) nearly quantitative singlet-singlet energy transfer to the C(60) moiety, (ii) fullerene intersystem crossing, and (iii) triplet-triplet energy transfer back to the SubPc. On the contrary, the stabilization of the SubPc(*)(+)-C(60)(*)(-) radical pair state by increasing the polarity of the medium or by lowering the donor-acceptor redox gap causes charge transfer to dominate. In the case of 1c in benzonitrile, the thus formed radical pair has a lifetime of 0.65 ns and decays via the energetically lower lying triplet excited state. Further stabilization is achieved for dyad 1d, whose charge-transfer state would lie now below both triplets. The radical pair lifetime consequently increases in more than 2 orders of magnitude with respect to 1c and presents a significant stabilization in less polar solvents, revealing a low reorganization energy for this kind of SubPc-C(60) systems.  相似文献   

17.
Texaphyrins are pentaazadentate macrocycles with interesting photophysical properties and potential applications as nonlinear optical (NLO) materials, photosensitizers, magnetic resonance imaging (MRI) contrasting reagents, and radiation sensitizers, etc. To further red-shift the Q-like band of the texaphyrins, a benzotexaphyrin with an extensively delocalized pi-electron system was synthesized for the first time. Its photophysical characteristics were systematically investigated. Due to the extended pi-conjugation, the Q(0,0) band of benzotexaphyrin bathochromically shifts to 810 nm, and it emits at 825 nm with a singlet excited-state lifetime of 895 ps. Its triplet excited-state energy is estimated to be 119 kJ/mol. The triplet excited-state lifetime is approximately 2.2 micros, and the quantum yield of the triplet excited-state formation is 0.78. It also exhibits a triplet-triplet transient absorption in the region 505-590 nm. In addition, benzotexaphyrin exhibits high efficiency in generating singlet oxygen in methanol (Phi(Delta) = 0.65). Therefore, benzotexaphyrin could potentially be a NIR photosensitizer and emitter for photodynamic therapy and bioimaging applications.  相似文献   

18.
The formation and reactivity of the triplet state and free radicals of mefloquine hydrochloride (MQ) have been investigated by pulse radiolysis and flash photolysis. The excited triplet, cation radical and anion radical have been produced and their absorption characteristics determined. The triplet-triplet absorption spectrum of MQ showed a maximum at 430 nm, with a molar absorption coefficient of 3600 M(-1) cm(-1) and the quantum yield for intersystem crossing was determined to be close to unity. Deactivation of the triplet, in the absence of oxygen, led to the formation of MQ cation and/or anion radicals. The molar absorption coefficient of the cation radical at 330 nm was determined to be 2300 M(-1) cm(-1), whilst that for the anion radical was 2400 M(-1) cm(-1) at 620 nm and 3600 M(-1) cm(-1) at 350 nm. The molar absorption coefficients of the proposed neutral radical at 320 nm and 520 nm were 4000 M(-1) cm(-1) and 1300 M(-1) cm(-1) respectively. The quantum yield for the formation of singlet oxygen, sensitized by MQ triplet, was determined to be close to unity. Aqueous solutions of MQ were found to photoionize to yield hydrated electron and cation radical of MQ in a biphotonic process. The influences of pH, buffer concentration, oxygen concentration and addition of sodium azide on the formation and reactivity of the transients were evaluated. The reactions between MQ and solvated electrons and superoxide anion were also studied.  相似文献   

19.
Quasilinear absorption and luminescence spectra of 1,2-benzotetraphene were obtained in polycrystalline matrices at 77 K. Tne energies of successive excited singlet states as well as the energy of the lowest excited triplet state were found experimentally and compared with those calculated by the PPP CI method. The fluorescence lifetime and quantum yield were determined experimentally. Moreover, the radiationless transition probabilities, lifetime of triplet state and phosphorescence quantum yield were estimated employing the Siebrand-Williams model. The results obtained suggest that radiationless ISC processes are the main deactivation channel of the S1 and T1 states. The vibrational analysis of quasilinear absorption and luminescence spectra was performed and fundamental frequencies of ground and first excited singlet states were determined.  相似文献   

20.
Heteroleptic copper(I) complexes CuPOP-F and CuFc-F have been prepared from a fullerene-substituted phenanthroline ligand and bis[2-(diphenylphosphino)phenyl] ether (POP) and 1,1'-bis(diphenylphosphino)ferrocene (dppFc), respectively. Electrochemical studies indicate that some ground-state electronic interaction between the fullerene subunit and the metal-complexed moiety are present in both CuPOP-F and CuFc-F. Their photophysical properties have been investigated by steady state and time-resolved UV-vis-NIR luminescence spectroscopy and nanosecond laser flash photolysis in a CH2Cl2 solution and compared to those of the corresponding model copper(I) complexes CuPOP and CuFc and of the fullerene model compound F. Selective excitation of the methanofullerene moiety in CuPOP-F results in regular deactivation of the lowest singlet and triplet states, indicating no intercomponent interactions. Conversely, excitation of the copper(I)-complexed unit (405 nm, 40% selectivity) shows that the strongly luminescent triplet metal-to-ligand charge-transfer ((3)MLCT) excited state located at 2.40 eV is quenched by the carbon sphere with a rate constant of 1.6 x 10(8) s(-1). Details on the mechanism of photodynamic processes in CuPOP-F via transient absorption are hampered by the rather unfavorable partition of light excitation between the two chromophores. By determination of the yield of formation of the lowest fullerene triplet level through sensitized singlet oxygen luminescence in the NIR region, it is shown that the final sink of photoinduced processes is always the fullerene triplet. This can be populated via a two-step charge-separation charge-recombination process and a less favored (3)MLCT --> (3)C60 triplet-triplet energy-transfer pathway. In CuFc-F, both of the photoexcited copper(I)-complexed and fullerene moieties are quenched by the presence of the ferrocene unit, most likely via ultrafast energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号