首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work Linear Response Equilibrium (LRE) and Echo-planar spectroscopic imaging (EPSI) are compared in terms of sensitivity per unit time and power deposition. In addition an extended dual repetition time scheme to generate broad stopbands for improved inherent water suppression in LRE is presented. The feasibility of LRE and EPSI for assessing cholesterol esters in human carotid plaques with high spatial resolution of 1.95×1.15×1.15 mm(3) on a clinical 3T MR system is demonstrated. In simulations and phantom experiments it is shown that LRE has comparable but lower sensitivity per unit time relative to EPSI despite stronger signal generated. This relates to the lower sampling efficiency in LRE relative to EPSI as a result of limited gradient performance on clinical MR systems. At the same time, power deposition of LRE is significantly reduced compared to EPSI making it an interesting niche application for in vivo high field spectroscopic imaging of metabolites within a limited bandwidth.  相似文献   

2.
The primary goal of this study was to establish a rigorous approach for determining and comparing the NMR detection sensitivity of in vivo 31P MRS at different field strengths (B0). This was done by calculating the signal-to-noise ratio (SNR) achieved within a unit sampling time at a given field strength. In vivo 31P spectra of human occipital lobe were acquired at 4 and 7 T under similar experimental conditions. They were used to measure the improvement of the human brain 31P MRS when the field strength increases from 4 to 7 T. The relaxation times and line widths of the phosphocreatine (PCr) resonance peak and the RF coil quality factors (Q) were also measured at these two field strengths. Their relative contributions to SNR at a given field strength were analyzed and discussed. The results show that in vivo 31P sensitivity was significantly improved at 7 T as compared with 4 T. Moreover, the line-width of the PCr resonance peak showed less than a linear increase with increased B0, which leads to a significant improvement in 31P spectral resolution. These findings indicate the advantage of high-field strength to improve in vivo 31P MRS quality in both sensitivity and spectral resolution. This advantage should improve the reliability and applicability of in vivo 31P MRS in studying high-energy phosphate metabolism, phospholipid metabolism and cerebral biogenetics in the human at both normal and diseased states noninvasively. Finally, the approach used in this study for calculating in vivo 31P MRS sensitivity provides a general tool in estimating the relative NMR detection sensitivity for any nuclear spin at a given field strength.  相似文献   

3.
Langendorff灌流心脏的31P NMR谱测定   总被引:2,自引:0,他引:2  
测定了Langendorff灌流大鼠和兔心脏的31P NMR谱.观测到PCr、ATP、SP、Pi以及PME和GPC等含磷代谢物的共振峰,各谱峰之间实现了很好的分辨.在3~5min的累加时间内测得的图谱具有较好的S/N,可用于以上含磷代谢物的定量测定,以高能含磷化合物ATP和PCr相对峰强度以及冠脉流量的变化对灌流大鼠心脏代谢的稳定性进行了考察,结果表明,在本实验条件下大鼠心脏的能量储存至少可稳定2h,用所建方法以3min的时间间隔对同一大鼠心脏缺血21min及再灌注12min过程中心脏的31P NMR谱进行了连续跟踪测定,并初步观测了缺血及再灌注过程中心肌细胞内ATP、PCr与Pi之间的消长关系.  相似文献   

4.
Mitochondrial metabolism particularly oxidative phosphorylation is greatly influenced by thyroid hormones. Earlier studies have described neuromuscular symptoms as well as impaired muscle metabolism in hypothyroid and hyperthyroid patients. In this study, we intend to look in to the muscle bioenergetics including phosphocreatine recovery kinetics based oxidative metabolism in thyroid dysfunction using in vivo 31P nuclear magnetic resonance spectroscopy (MRS). 31P MRS was carried out at resting state on 32 hypothyroid, 10 hyperthyroid patients and 25 control subjects. Nine out of 32 hypothyroid patients and 17 out of 25 control subjects under went exercise protocol for oxidative metabolism study and performed plantar flexion exercise while lying supine in 1.5 T magnetic resonance scanner using custom built exercise device. MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr), phosphodiesters (PDE) and adenosine triphosphate (ATP) of the calf muscle were acquired during rest, exercise and recovery phase. PCr recovery rate constant (kPCr) and oxidative capacity were calculated by monoexponential fit of PCr versus time (t) at the beginning of recovery. During resting condition in hypothyroid patients, PCr/Pi ratio was reduced whereas PDE/ATP and Pi/ATP were increased. However, in case of hyperthyroidism, an increased PCr/Pi ratio and reduced PDE/ATP and Pi/ATP were observed. The results confirmed differential energy status of the muscle due to increased or decreased levels of thyroid hormone. Our results also demonstrate reduced oxidative metabolism in hypothyroid patients based on PCr recovery kinetics. PCr recovery kinetics study after exercise revealed decreased PCr recovery rate constant (kPCr) in hypothyroid patients compared to controls that resulted in decrease in oxidative capacity of muscle by 50% in hypothyroids. These findings are consistent with a defect of high energy phosphate mitochondrial metabolism in thyroid dysfunction.  相似文献   

5.
Several previous 31 phosphorus magnetic resonance spectroscopy ((31)P MRS) studies performing incremental or progressive muscle exercises have observed that a decrease in pH is accompanied with an acceleration in phosphocreatine (PCr) hydrolysis. The purpose of this study was to investigate the relationship between PCr breakdown and pH during isotonic, exhaustive, incremental plantar flexion exercises. We included eight healthy, male volunteers into this study. Using a 1.5 Tesla MR scanner and a self-built exercise bench, we performed serial free induction decay (FID) (31)P MRS measurements with a time resolution of 1 min at rest, isotonic calf muscle exercise, and recovery. The exercise protocol consisted of 5-min intervals with 4.5, 6, 7.5, and 9 W workload followed by 9-min recovery. Changes in PCr and inorganic phosphate (Pi) were determined as percent changes in comparison to the baseline. In addition, pH values were calculated. This study obtained significant decreases in PCr corresponding to the gradual increases in workload. In each workload level that was succeeded by all volunteers, PCr hydrolysis passed into a steady state. After an early biphasic response, we detected a significant decrease in pH from the first to the second minute of the 6-W workload level followed by a further continuous decrease in pH up to the second minute of the recovery phase. The decrease in pH was not accompanied by acceleration in PCr hydrolysis. In conclusion, this study shows that PCr hydrolysis during incremental plantar flexion exercises passes into a steady state at different workload levels. The observed decrease in pH does not result in acceleration of PCr hydrolysis.  相似文献   

6.
The ratio of inorganic phosphate to phosphocreatine (Pi:PCr) is a validated marker of mitochondrial function in human muscle. The magnetic resonance imaging rapid acquisition with relaxation enhancement (RARE) pulse sequence can acquire phosphorus-31 (31P) images with higher spatial and temporal resolution than traditional spectroscopic methods, which can then be used to create Pi:PCr ratio maps of muscle regions. While the 31P RARE method produces images that reflect the content of the 31P metabolites, it has been limited to producing an image of only one chemical shift in a scan. This increases the scan time required to acquire images of multiple chemical shifts as well as the likelihood of generating inaccurate Pi:PCr maps due to gross motion. This work is a preliminary study to demonstrate the feasibility of acquiring Pi and PCr images in a single scan by interleaving Pi and PCr chemical shift acquisitions using a chemically selective radiofrequency excitation pulse. The chemical selectivity of the excitation pulse evaluated and the Pi:PCr maps generated using the interleaved Pi and PCr acquisition method with the subject at rest and during exercise are compared to those generated using separate Pi and PCr acquisition scans. A paired t test indicated that the resulting Pi:PCr ratios for the exercised forearm muscle regions were not significantly different between the separate Pi and PCr acquisition method (3.18±1.53) (mean±standard deviation) and the interleaved acquisition method (3.41±1.66). This work demonstrates the feasibility of creating Pi:PCr ratio maps in human muscle with Pi and PCr images acquired simultaneously by interleaving between the Pi and PCr resonances in a single scan.  相似文献   

7.
The present study was performed to determine the characteristics of the biochemical metabolites related to gastric cancer using ex vivo (1)H magnetic resonance spectroscopy (MRS), and to assess the clinical usefulness. A total of 35 gastric specimens resected during surgery for gastric cancer were used to compare MR spectra. A 1.5-T (64-MHz) clinical MR imager equipped with facilities for spectroscopy was used to obtain MR spectra from 33 gastric specimens. High-resolution (1)H nuclear magnetic resonance (NMR) spectra of the remains of two specimens were also examined with a 9.4-T (400-MHz) NMR spectrometer. Localized spectroscopic measurements were performed in two layers of gastric tissue, the proper muscle layer and the composite mucosa/submucosa layer. T(2) FSE and 3D SPGR images were used to determine the voxel size and the location for MRS data collection. MR spectra were obtained using the single-voxel PRESS technique with parameters of TR/TE = 2000/30 ms, NA = 256, and voxel size = 3 x 3 x 3 mm(3) (27 microL). Cancerous and noncancerous gastric tissues in the voxel were determined by histopathological analysis. On 9.4-T ex vivo NMR spectroscopy, the following metabolite peaks were found: lipids at 0.9 ppm (CH(3)) and 1.3 ppm (CH(2)); alanine (beta-CH(3)) at 1.58 ppm; N-Acetyl neuraminic acid (NANA: sialic acid) at 2.03 ppm; and glutathione at 2.25 ppm in normal gastric tissue layers. In the 1.5-T MR system, broad and featureless spectral peaks of the various metabolites in normal human gastric tissue were observed at 0.9 ppm, 1.3 ppm, 2.0 ppm, and 2.2 ppm regardless of gastric tissue layer. In specimens (Borrmann type III) with tubular adenocarcinoma, resonance peaks were observed at 1.26 ppm, 1.36 ppm (doublet of lactate), and 3.22 ppm (choline). Cancer lesions showed decreased levels of lipid peaks, showing the significant lactate doublet peaks, and increased intensity of the choline peak as compared with noncancerous gastric tissue. We found that decreased levels of lipids and increases in lactate and choline peaks in gastric tissue were markers for malignancy in gastric lesions. Information provided by ex vivo (1)H MRS, together with the development of in vivo (1)H MRS with high field strength and high resolution, may be very useful for the diagnosis of gastric cancer in clinical situation.  相似文献   

8.
The precision of cerebral proton magnetic resonance spectroscopy (MRS) measurements is critical both in the clinical setting and for research purposes. Marshall et al. have recently concluded that “disappointing in vivo repeatability…is likely to limit” the ability of MRS to detect modest changes. We present here a comprehensive study of the precision of short- and long-term metabolite peak area ratios and water referenced metabolite peak areas for long echo time point resolved spectroscopy (PRESS) spectra (repetition time (TR) = 2000 ms, echo time (TE) = 136 ms) acquired from the occipital lobes of normal volunteers and a phantom using a conventional whole body 1.5 T MR system and conventional acquisition and analysis protocols. Short-term in vitro precision determined by five repeat scans on five occasions was excellent as measured by a mean coefficient of variation (NAA/Cho = 1.3%, NAA/Cr + PCr = 1.0%, Cho/Cr + PCr = 1.6%, NAA/H2O = 0.5%, Cho/H2O = 1.2%, Cr + PCr/H2O = 0.8%). Long term in vitro precision using 100 spectra acquired over 2 years was also very good (NAA/Cho = 2.7%, NAA/Cr + PCr = 1.4%, Cho/Cr + PCr = 2.2%, NAA/H2O = 1.5%, Cho/H2O = 2.4%, Cr + PCr/H2O = 1.5%). Short-term in vivo precision determined by five repeat scans in a single scanning session on eight subjects was also excellent (NAA/Cho = 5.2%, NAA/Cr + PCr = 3.0%, Cho/Cr + PCr = 6.6%, NAA/H2O = 1.4%, Cho/H2O = 4.9%, Cr + PCr/H2O = 2.7%) and only worsened slightly for long-term in vivo precision determined by five repeat scans on eight subjects over 3 months (NAA/Cho = 5.2%, NAA/Cr + PCr = 4.8%, Cho/Cr + PCr = 7.7%, NAA/H2O = 2.5%, Cho/H2O = 6.4%, Cr + PCr/H2O = 3.8%). We attribute the excellent precision reported here to the use of highly automated techniques for voxel shimming, water suppression and peak area measurements. These results allow us to repudiate Marshall’s assertion regarding disappointing repeatability of in vivo MRS.  相似文献   

9.
A probe using a solenoid coil tilted 45 degrees off-axis has been used to study the 31P NMR relaxation characteristics of the resonances arising from phosphorus metabolites in rats in vivo. T1, T1 rho and T2 values have been determined for phosphocreatine and ATP in leg muscle. The ratio of 31P T1(1700ms) to T2(12ms) for ATP was in excess of 200:1 compared with a ratio of 5:1 for 1H T1:T2. Of major significance was the observation that T2 values for phosphocreatine (230ms) were markedly longer than T2 values for ATP (12ms). Thus by use of appropriate delay times in spin echo sequences ATP signals can be nulled, and discrete 31P imaging of phosphocreatine in muscle may be possible provided the overall signal-to-noise is satisfactory.  相似文献   

10.
Twenty-seven patients with soft-tissue tumors were examined with a Picker 0.15-tesla resistive magnet and by computed tomography (CT). In all but one patient, MRI was better than or equal to CT in defining the anatomic extent of the tumor. We could determine whether major vascular structures were engulfed by the tumor in 80% of the MRI examinations but only in 62% of the CT scans. MRI and CT were equally effective in determining the presence or absence of bony invasion. The MRI images of all the tumors showed increased signal intensity relative to normal muscle when spin-echo (SE) sulse sequences with long repeat times were used (SE: echo time [TE], 60 ms; repetition time [TR], 2,000 ms). When T1 weighted pulse sequences were used (SE: TE, 30 ms; TR, 500 ms or inversion recovery: inversion time, 500 ms; TE, 40 ms; TR, 2,000 ms) the malignant tumors showed decreased signal intensity compared to normal muscle. Only lipomas showed high signal intensity on both T1 and T2 weighted pulse sequences.  相似文献   

11.
31P NMR spectra and 1H MR T1- and T2-weighted spin-echo images were concurrently observed in rat hind limb during arterial occlusion and following reperfusion. With arterial occlusion, phosphocreatine level decreased and inorganic phosphate (Pi) level increased in 31P NMR spectra. Intracellular pH's dropped as a function of time. Beta-ATP started to decrease in three hours. In six hours after the occlusion, any peaks other than Pi were scarcely detected. The signal intensities in the 1H MR images increased homogeneously in both T1- and T2-weighted conditions, but the changes were more profound with T2-weighted images. After the release of the arterial occlusion, the 31P NMR spectra recovered to the preischemic state in several hours. The 1H MR images during reperfusion showed characteristic heterogenous pattern. The signal intensities in the anterior tibial muscle and the gastrocnemius muscle remained high in T1-weighted condition and the intensities further increased in T2-weighted condition, while those in other parts returned to the preischemic level. These changes were found to be irreversible even 12 hr after the release. The high signal intensities suggested the increase of water in the extracellular compartment induced by so-called reperfusion injury. Multinuclear analysis using in vivo NMR was valuable to consecutively detect time-dependent and location-specific response in skeletal muscle during ischemia and reperfusion.  相似文献   

12.
NMR characterization of natural abundance (15)N in phosphorus-nitrogen compounds can be performed through (31)P using inverse detection methods. When the (31)P-(15)N scalar coupling is small, its observation is greatly disturbed by the residual signal coming from the 99.6% abundant (14)N isotopomer that usually is not completely suppressed by the phase cycle of the sequence. The combined use of pulsed field gradients to suppress this residual signal and the enhanced sensitivity (31)P, (15)N[(1)H]-esHSQC experiment affords artifact-free spectra with good signal-to-noise ratio, which allows the accurate measurement of (15)N NMR parameters such as chemical shifts and coupling constants with the benefits of phosphorus detection.  相似文献   

13.
In this study we address the question of quantification of muscle lactate using double quantum filtered (DQF) (1)H NMR spectroscopy where dipolar and scalar coupled spectra are acquired. For this, lactate content in muscle samples was independently determined using a conventional enzymatic assay and DQF, (1)H NMR spectroscopy. NMR quantification of lactate relied on comparison of muscle spectra with similarly acquired spectra of standard lactate solutions. Transverse relaxation, T(2), and dipolar coupling effects were investigated at two different orientations of muscle fibers relative to B(o) and at various lactate concentrations. In all cases, we found a biexponential T(2) decay of the lactate methyl signal with a long T(2) of 142 ms (+/-8 ms, n=24) and a short T(2) of 37 ms (+/-6 ms, n=24). Lactate content of muscle determined by NMR spectroscopy agreed with the results obtained from enzymatic assays of the same samples provided that T(2) effects as well as the presence of both scalar and dipolar coupling interactions of lactate in muscle were taken into account.  相似文献   

14.
In this work we present a method for improving the speed of spin-spin relaxation time (T2) measurements for compartmental analysis in stimulated echo localized magnetic resonance spectroscopy without reducing the sampling density. The technique uses a progressive repetition time (TR) to compensate for echo time (TE) dependent variations in saturation effects that would otherwise modulate the received signal at short TRs. The method was validated in T2 studies on 10 young healthy subjects in spectroscopic voxels localized along either the right or left Sylvian fissure (2 x 2 x 1.5 cm3, 10 ms mixing time (TM), 2048 data points, 819.2 ms acquisition time). The TR was automatically adjusted so that TR-TM-TE/2 was kept constant as the TE was incremented. Compared to long TR T2 experiments, the progressive TR technique consistently replicated the T2 relaxation times and reference signals of the tissue water compartment while reducing the data acquisition time by more than 50%. The percent error was on average less than 2% for estimates of T2 and S(0) for the tissue water, an indication that the progressive TR technique is a useful method for determining the tissue water signal for internal referencing.  相似文献   

15.
1H MR spectra of human muscles were recorded before, during, and after fatiguing exercise. In contrast to expectations, it was found that the spectral contributions of creatine/phosphocreatine (Cr/PCr) were subject to change as a function of exercise. In particular, the dipolar-coupled methylene protons of Cr/PCr were found to be reduced in intensity in proportion to the co-registered PCr levels. Recovery after exercise and behavior under ischemic conditions provide further evidence to suggest that the contributions of the CH2 protons of Cr/PCr to 1H MR spectra of human muscle in vivo reflect PCr rather than Cr levels. Variation of experimental parameters showed that this effect is not due to a trivial change in relaxation times. At present it can only be speculated about why the Cr resonances have reduced NMR visibility. If temporary binding to macromolecules should be involved, the free Cr concentration-important for equilibrium calculations of the creatine kinase reaction-might be different from what was previously assumed.  相似文献   

16.
Half-Fourier imaging is useful for reducing imaging time by requiring less than the usual number of phase-encoding steps. This increase in speed can be traded off for longer repeat times, TR, for improved contrast-to-noise in the same imaging time or to collect short asymmetric echoes. Consequently, it is shown to be especially useful for long TR spin-echo imaging where at 1.5 T a repeat time of 4 sec is recommended for a double-echo TE = 30/90 sequence or 3 sec for a double-echo TE = 15/90 sequence. Short TR FLASH imaging also benefits from a longer TR since there is more time to spoil the signal. In both cases, there is the advantage when a multislice acquisition mode is used that more slices (and hence, a larger volume) can be taken. Another application is to apply half-Fourier imaging in the read direction to avoid spin dephasing and motion artifacts. This is particularly useful in angiographic imaging where smaller pixel sizes and shorter echo times both reduce pixel dephasing. Again, even though taking less than the usual number of data points leads to a reduction in S/N, the improved signal and resolution for blood vessels can more than compensate this loss.  相似文献   

17.
Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo 1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.  相似文献   

18.
We evaluated two methods for correcting inhomogeneity-induced signal losses in magnetic resonance gradient-echo imaging that either use gradient compensation or simply acquire thin sections. The strategies were tested in the human brain in terms of achievable quality of T2*-weighted images at the level of the hippocampus and of functional activation maps of the visual cortex. Experiments were performed at 2.0 T and based on single-shot echo-planar imaging at 2. 0 x 2.0 mm(2) resolution, 4 mm section thickness, and 2.0 s temporal resolution. Gradient compensation involved a sequential 16-step variation of the refocusing lobe of the slice-selection gradient (TR/TE = 125/53 ms, flip angle 15 degrees ), whereas thin sections divided the 4-mm target plane into either four 1-mm or eight 0.5-mm interleaved multislice acquisitions (TR/TE = 2000/54 ms, flip angle 70 degrees ). Both approaches were capable of alleviating the inhomogeneity problem for structures in the base of the brain. When compared to standard 4-mm EPI, functional mapping in the visual cortex was partially compromised because of a lower signal-to-noise ratio of inhomogeneity-corrected images by either method. Relative to each other, consistently better results were obtained with the use of contiguous thin sections, in particular for a thickness of 1 mm. Multislice acquisitions of thin sections require minimal technical adjustments.  相似文献   

19.
The theory and numerical aspects of the recently developed multidimensional version of the filter diagonalization method (FDM) are described in detail. FDM can construct various "ersatz" or "hybrid" spectra from multidimensional time signals. Spectral resolution is not limited by the time-frequency uncertainty principle in each separate frequency dimension, but rather by the total joint information content of the signal, i.e., N(total) = N(1) x N(2) x vertical ellipsis x N(D), where some of the interferometric dimensions do not have to be represented by more than a few (e.g., two) time increments. It is shown that FDM can be used to compute various reduced-dimensionality projections of a high-dimensional spectrum directly, i.e., avoiding construction of the latter. A subsequent paper (J. Magn. Reson. 144, 357-366 (2000)) is concerned with applications of the method to 2D, 3D, and 4D NMR experiments.  相似文献   

20.
The 3D fast asymmetric spin echo (FASE) method combines the half-Fourier technique and 3D fast spin echo (FSE) sequence. The advantage of this method is that it maintains the same spatial resolution as FSE while markedly reducing the imaging time. The purpose of the present study was to evaluate the usefulness of the 3D FASE technique in displaying the inner ear structure using phantom and volunteer studies. 3D FSE sequence images were obtained for comparison, and the optimum 3D FASE sequence was investigated on a 1.5T MR scanner. The results of phantom experiments showed increased signal-to-noise ratio (SNR) with prolonging repetition time (TR) on both 3D FASE and 3D FSE sequences. Although the SNR of 3D FASE images was 20-25% lower than that of 3D FSE images with the same TR, the SNR per minute with 3D FASE was about twice that with 3D FSE. On 3D FASE images, a higher spatial resolution was obtained with 2- or 4-shot images than with single-shot images. However, no significant difference was observed between 2-shot and 4-shot images. In the volunteer study, 3D FASE images using a TR of 5000 ms and an effective echo time (TEeff) of 250 ms showed a high SNR and spatial resolution and provided excellent contrast between cerebrospinal fluid and nerves in the internal auditory canal. The highest contrast was achieved in the 2-shot/2 number of excitations sequence. 3D FASE provides the same image quality as 3D FSE with a significant reducing in imaging time, and gives strong T2-weighted images. This method enables detailed visualization of the tiny structures of the inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号