首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M2X4(HL)(H2O)4] (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, [Fe2Cl6(HL)(H2O)2], [(FeSO4)2(HL)(H2O)4] and [(UO2)2(HL) (NO3)4].H2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as DeltaE*, DeltaH*, DeltaS*, and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.  相似文献   

2.
Four new azo ligands, L1 and HL2-4, of sulfa drugs have been prepared and characterized. [MX(2)(L1)(H(2)O)(m)].nH(2)O; [(MX(2))(2)(HL2 or HL3)(H(2)O)(m)].nH(2)O and [M(2)X(3)(L4)(H(2)O)].nH(2)O; M=Co(II), Ni(II) and Cu(II) (X=Cl) and Zn(II) (X=AcO); m=0-4 and n=0-3, complexes were prepared. Elemental and thermal analyses (TGA and DTA), IR, solid reflectance spectra, magnetic moment and molar conductance measurements have accomplished characterization of the complexes. The IR data reveal that HL1 and HL2-3 ligands behave as a bidentate neutral ligands while HL4 ligand behaves as a bidentate monoionic ligand. They coordinated to the metal ions via the carbonyl O, enolic sulfonamide S(O)OH, pyrazole or thiazole N and azo N groups. The molar conductance data reveal that the chelates are non-electrolytes. From the solid reflectance spectra and magnetic moment data, the complexes were found to have octahedral, tetrahedral and square planar geometrical structures. The thermal behaviour of these chelates shows that the water molecules (hydrated and coordinated) and the anions are removed in a successive two steps followed immediately by decomposition of the ligand in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves applying Coats-Redfern method.  相似文献   

3.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

4.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

5.
The synthesis and structural characterization of mixed ligand complexes derived from 2,6-pyridinedicarboxaldehydebis(o-hydroxyphenylimine), 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine) (1(ry) ligands) and 2-aminopyridne (2(ry) ligand) are reported. The ligands and their transition metal complexes were characterized on the bases of their elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The mixed ligand complexes are formed in the 1:1:1 (M:L(1) or L(2):L') ratio as found from the elemental analyses and found to have the formulae [MX(2)(L(1) or L(2))(L')].nH(2)O where M = Co(II), Ni(II), Cu(II) and Zn(II), L(1) = 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine), L(2) = 2,6-pyridine dicarboxaldehydebis(o-hydroxyphenylimine), L' = 2-aminopyridine, X = Cl(-) in case of Cu(II) complex and Br(-) in case of Co(II), Ni(II) and Zn(II) complexes and y = 0-3. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine-N and two azomethine-N. While 2-aminopyridine coordinated to the metal ions via its pyridine-N. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes are found to be octahedral. The thermal behaviour of these chelates shows that the hydrated water molecules and the anions are removed in a successive two steps followed immediately by decomposition of the ligands (L(1), L(2) and L') in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves and discussed. The ligands and their metal chelates have been screened for their antimicrobial activities and the findings have been reported, explained and compared with some known antibiotics.  相似文献   

6.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

7.
Three lanthanide complexes (La(III), Er(III), and Yb(III)) derived from ferrocene-based Schiff base ligand (HL) were synthesized from condensation of 2-aminophenol with 2-acetylferrocene. The ligand and metal complexes were characterized based on elemental analyses, IR, 1H NMR, molar conductance, SEM and thermal analyses (TG, DTG). The molar conductance revealed that all the metal chelates were electrolytes having the general composition [M(L)(Cl)(H2O)3]Cl·4H2O. HL and its complexes were screened for their antibacterial and antifungal activity by agar diffusion method. The results of these studies showed that the metal complexes are more effective antibacterial and antifungal agents as compared with the free ligand. The anticancer activity was screened against human breast cancer cell line (MCF-7). Results indicated that metal complexes showed an increased cytotoxicity in proliferation to cell lines as compared to free ligand. Molecular docking studies were performed to identify the binding orientation or conformation of a complex in the active site of the protein. HL and its complexes were docked with crystal structure of DDB1 of breast cancer, crystal structure of HCV, RNA-dependent RNA polymerase, receptors of HBV core protein, crystal structure of the Fab fragment of anti-HAV.  相似文献   

8.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) chelates with tenoxicam (Ten) drug (H(2)L(1)) and dl-alanine (Ala) (HL(2)) and also the binary UO(2)(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO(2)(II) binary chelate was isolated in 1:2 ratio with the formula [UO(2)(H(2)L)(2)](NO(3))(2). The ternary chelates were isolated in 1:1:1 (M:H(2)L(1):L(2)) ratios and have the general formulae [M(H(2)L(1))(L(2))(Cl)(n)(H(2)O)(m)].yH(2)O (M=Fe(III) (n=2, m=0, y=2), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=3)); [M(H(2)L(1))(L(2))](X)(z).yH(2)O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO(2)(II) (X=NO(3), z=1, y=2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

9.
Metal complexes derived from 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine); L1, 2,6-pyridinedicarboxaldehydebis (o-hydroxyphenylimine); L2, are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The complexes are found to have the formulae [MX2(L1 or L2)] x nH2O, where M=Fe(II), Co(II), Ni(II), Cu(II) and Zn(II), X=Cl in case of Fe(II), Co(II), Ni(II), Cu(II) complexes and Br in case of Zn(II) complexes and n=0-2.5. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine-N and two azomethine-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are trigonal bipyramidal (in case of Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (in case of Fe(II) complexes). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the coordinated water, anions and ligands (L1 and L2) in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent organic ligands against one or more bacterial species.  相似文献   

10.
A new series of stable transition metal complexes of the formula M(L)X·S, where M = Cu(II), Ni(II), Co(III), Cr(III) and Fe(III) and L is the deprotonated ligand of 4-hydroxy-coumarin-3-thiocarbohydrazone, X = Cl(-), NO(3)(-) or CH(3)COO(-) and S = H(2)O and/or EtOH. The HL ligand was prepared by the reaction of 3-formyl-4-hydroxy-coumarine with thiocarbohydrazide in the molar ratio 1:1. The HL ligand and its metal complexes were characterized by elemental analysis, (1)H NMR, IR and electronic spectra, and molar conductance and magnetic measurements and thermal gravimetric analysis (TGA). The HL ligand acts as a monobasic tridentate ONS donor in all metal complexes, and coordinated through the phenolic OH, azomethine nitrogen and thione sulfur. Electronic spectra with magnetic moments suggested varieties of geometries around the central metal atoms. Thermal gravimetric analysis indicates that the complexes are stable up to 300°C, and release the uncoordinated and/or coordinated H(2)O/solvent molecules, which is accompanied by a color change. The formed complexes after releasing the solvent were investigated and their structures are suggested to have square planar or octahedral arrangement. Pharmacodynamic of cobalt(III) complex on some biochemical parameters and histological studies in serum and heart tissue in rats have been studied. Although the complexes demonstrated a significant effect at low dose than the high dose, the ligand showed significant good effects in both high and low doses on the biochemical analysis in serum and heart tissue. Cobalt complex was screened in order to evaluate its antifungal activity against the filamentous fungi Aspergillus niger, Aspergillus fumigatus, and Aspergillus flavus, and antibacterial activity against the Candida albicans, Escherichia coli, Klebseilla pneumoniae and Pseudomonas aeruginosa.  相似文献   

11.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

12.
Compounds having general formula: [M(FO)(Cl)(x)(H(2)O)(y)].zH(2)O, where (M=Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), FO=folate anion, x=2 or 4, y=2 or 4 and z=0, 1, 2, 3, 5 or 15) were prepared. The obtained compounds were characterized by elemental analysis, infrared as well as electronic spectra, thermogravimetric analysis and the conductivity measurements. The results suggested that all folate complexes were formed by 2:1 molar ratio (metal:folic acid) as a bidentate through both of the two carboxylic groups. The molar conductance measurements proved that the folate complexes are electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* were estimated from the DTG curves. The antibacterial evaluation of the folic acid and their complexes was also done against some Gram positive/negative bacteria as well as fungi.  相似文献   

13.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

14.
Synthesis, spectroscopic and thermal studies of some complexes of a new N(2)-Schiff base ligand of N(1),N(2)-bis((E)-2-methyl-3-phenylallylidene)ethane-1,2-diamine (L) with a general formula of MLX(2) (M = Zn(II), Cd(II) and Hg(II); X = Cl(-), Br(-), I(-), SCN(-) and N(3)(-)) are described. The ligand and its complexes were characterized by elemental analysis, molar conductance, UV-vis spectra, FT-IR spectra, MS, (1)H NMR and (13)C NMR spectra. The conductivity measurement as well as spectral data indicated that the complexes are non-electrolyte. (1)H and (13)C NMR spectra have been studied in DMSO-d(6) and/or CDCl(3). The thermal behavior of the complexes shows weight loss by decomposition of the anions and ligand segments in the subsequent steps. Activation thermodynamic parameters of decomposition such as E*, ΔH*, ΔS* and ΔG* were calculated from TG curves.  相似文献   

15.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) complexes with piroxicam (Pir) drug (H2L1) and dl-alanine (Ala) (HL2) and also the binary UO2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO2(II) binary complex was isolated in 1:2 ratio with the formula [UO2(H2L)2](NO3)2. The ternary complexes were isolated in 1:1:1 (M:H2L1:L2) ratios. The solid complexes were isolated in the general formulae [M(H2L)(L2)(Cl)n(H2O)m].yH2O (M=Fe(III) (n=2, m=0, y=1), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=0)); [M(H2L)(L2)](X)z.yH2O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO2(II) (X=NO3, z=1, y=2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

16.
New Schiff base (H2L) ligand is prepared via condensation of o-phthaldehyde and 2-aminophenol. The metal complexes of Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with the ligand are prepared in good yield from the reaction of the ligand with the corresponding metal salts. They are characterized based on elemental analyses, IR, solid reflectance, magnetic moment, electron spin resonance (ESR), molar conductance, 1H NMR and thermal analysis (TGA). From the elemental analyses data, the complexes are proposed to have the general formulae [M(L)(H2O)nyH2O (where M = Mn(II) (n = 0, y = 1), Fe(II) (n = y = 0), Co(II) (n = 2, y = 0), Ni(II) (n = y = 2), Cu(II) (n = 0, y = 2) and Zn(II) (n = y = 0), and [MCl(L)(H2O)]·yH2O (where M = Cr(III) and Fe(III), y = 1–2). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that H2L is coordinated to the metal ions in a bi-negatively tetradentate manner with ONNO donor sites of the azomethine N and deprotonated phenolic-OH. This is supported by the 1H NMR and ESR data. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II) and Ni(II) complexes), tetrahedral (Mn(II), Fe(II) and Zn(II) complexes) and square planar (Cu(II) complex). The thermal behaviour of these chelates is studied and the activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTGA curves using Coats-Redfern method. The parent Schiff base and its eight metal complexes are assayed against two fungal and two bacterial species. With respect to antifungal activity, the parent Schiff base and four metal complexes inhibited the growth of the tested fungi at different rates. Ni(II) complex is the most inhibitory metal complex, followed by Cr(III) complex, parent Schiff base then Co(II) complex. With regard to bacteria, only two of the tested metal complexes (Mn(II) and Fe(II)) weakly inhibit the growth of the two tested bacteria.  相似文献   

17.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

18.
A convenient method for the preparation of complexes of the Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, ZrO2+, UO2(2+), Zr4+ and Th4+ ions with caproic acid (Hcap) is reported and this has enabled 10 complexes of caproate anion to be formulated: [Cr(cap)3].5H2O, [Mn(cap)2(H2O)2], [Fe(cap)3].12H2O, [Co(cap)2(H2O)2].4H2O, [Ni(cap)2(H2O)2].3H2O, [Zn(cap)2], [ZrO(cap)2].3H2O, [UO2(cap)(NO3)], [Zr(cap)2(Cl)2] and [Th(cap)4]. These new complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. It has been found from the elemental analysis as well as thermal studies that the caproate ligand behaves as bidentate ligand and forming chelates with 1:1 (metal:ligand) stoichiometry for UO2(2+), 1:2 for (Mn2+, Co2+, Ni2+, Zn2+, ZrO2+ and Zr4+), 1:3 stoichiometry for (Cr3+ and Fe3+) and 1:4 for Th4+ caproate complexes, respectively, as bidentate chelating. The molar conductance measurements proved that the caproate complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The antibacterial activity of the caproic acid and their complexes was evaluated against some gram positive/negative bacteria.  相似文献   

19.
A convenient method for the preparation of barbiturate transition metal complexes: (i) Cr(3+), Mn(2+), Fe(3+), Zn(2+) and Cd(2+) ions with barbituric acid (H(2)L) and (ii) Cr(3+) and Mo(5+) with 2-thiobarbituric acid (H(2)L') was reported and this has enabled seven complexes to be formulated as: [Cr(HL)(2)(OH)(H(2)O)].H(2)O, [Mn(HL)(2)(H(2)O)(2)], [Fe(2)(L)(OH)(3)(H(2)O)(4)].2H(2)O, [Zn(HL)(2)], [Cd(HL)(2)], [Cr(HL')(OH)(2)(H(2)O)].H(2)O and [Mo(HL')(2)]Cl. These new barbiturate complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, (1)H NMR, mass, X-ray powder diffraction and UV/vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that, all complexes of barbituric and 2-thiobarbituric acids are non-electrolytes except for [Mo(HL')(2)]Cl. The electronic spectra and magnetic susceptibility measurements were used to infer the structures. The IR spectra of the ligands and their complexes are used to identify the mode of coordination. Kinetic and thermodynamic parameters such as: E, DeltaH, DeltaS and DeltaG are estimated according to the DTG curves. The two ligands and their complexes have been studied for their possible biological antifungal activity.  相似文献   

20.
The complexations of sulfasalazine (H3Suz) with some of transition metals have been investigated. Three types of complexes, [Mn(HSuz)-2(H2O)4] x 2H2O, [M(HSuz)-2(H2O)2] x xH2O (M=Hg(II), ZrO(II) and VO(II), x=4, 8 and 6, respectively) and [M(HSuz)-2(Cl)(H2O)3] x xH2O (M=Cr(III) and Y(III), x=5 and 6, respectively) were obtained and characterized by physicochemical and spectroscopic methods. The IR spectra of the complexes suggest that the H3Suz behaves as a bidentate ligand. The thermal decomposition of the complexes as well as thermodynamic parameters (DeltaE*, DeltaH*, DeltaS* and DeltaG*) were estimated using Coats-Redfern and Horowitz-Metzger equations. In vitro antimicrobial activities of the H3Suz and the complexes were tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号