首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过PM3方法研究氯自由基与吡啶分子加成反应的结果表明,生成不同产物2-氯吡啶、3-氯吡啶、4-氯吡啶的每一个反应通道都存在两个过渡态,生成2-氯吡啶反应路径主过渡态的能量及活化能最低,分别为-110293.6和139.2kJ/mol,反应优先生成2-氯吡啶,与实验结果一致.生成2-氰吡啶反应过程(IRC)相关的键长、键级和原子净电荷变化表明,吡啶环反应部位C原子与Cl加成形成C-Cl键主要与共轭双键断裂同步,而C-H键的断裂主要与共轭双键的重新形成同步.反应进程中氯原子净电荷从增加到减少的变化是氯原子诱导效应吸引电子和p-π共轭电荷平均分布等相互作用的结果.  相似文献   

2.
对2-甲基-1-丁烯、2-甲基-2-丁烯与甲醇反应生成甲基叔戊基醚的反应历程进行了量子化学研究, 结果表明, 反应过程包括两个基元步骤: 2-甲基-1-丁烯和2-甲基-2-丁烯与氢离子作用生成碳正离子, 活化能分别为E1=2.26 kJ/mol, E2=7.72 kJ/mol; 甲醇与叔碳正离子反应成醚, 活化能为E3=1.29 kJ/mol, 碳正离子的生成是反应的速控步骤. 2-甲基-1-丁烯与2-甲基-2-丁烯相互转化的异构化活化能分别为E'1=4.40 kJ/mol, E'2=63.11 kJ/mol, 高于成醚的活化能, 反应体系不发生烯烃相互转化的异构化反应.  相似文献   

3.
吡啶光氯化反应过渡态和反应途径的量子化学研究   总被引:1,自引:0,他引:1  
用量子化学B3LYP方法在3---21G*水平上优化吡啶光氯化反应加成取代反应机理生成邻、间、对位氯代吡啶不同反应途径的过渡态并对反应热和活化能进行了计算,对邻位反应途径进行了IRC反应路解析,计算结果表明邻位反应途径过渡态的能量最低,为-704.830027a.u.,生成2-氯吡啶所需的活化能最低,为114.60kJ/mol。光氯化反应主要产物为2-氯吡啶,与实验结果一致。IRC反应路径显示在反应过程中C(2)---H(7)键的断裂和C(2)-----Cl(8)键的生成是协同但不是同步的。  相似文献   

4.
用量子化学DFT方法在B3LYP/3-21G*水平下研究了2-氯吡啶气相光氯化取代反应生成2,3-二氯吡啶、2,4-二氯吡啶、2,5-二氯吡啶和2,6-二氯吡啶不同产物的过渡态,并计算了活化能.结果表明,生成2,6-二氯吡啶过渡态的能量最低,所需的活化能也最低,反应优先生成2,6-二氯吡啶.生成2,6-二氯吡啶的IRC结果显示反应过程中C-H键的断裂和C-C l键的生成协同但不同步.过渡态的构型接近于产物,是一个晚期过渡态.C l原子在反应进程中是给电子的,因此,氯自由基与2-氯吡啶反应是亲核取代的SN2机理.  相似文献   

5.
选用合理简化的焦炭模型,对煤焦燃烧过程中N2O的异相生成和分解机理进行了分子水平上的研究。采用UB3LYP/6-31G(d)密度泛函理论方法优化得到了反应路径上反应物、产物、中间体和过渡态的几何构型和各中间反应的活化能和反应焓变。NO与其预先吸附在焦炭表面解离生成的表面氮组分反应生成N2O的路径有两个,需要克服的势垒分别为69.3kJ/mol和200.0kJ/mol;NO亦可直接与焦炭中的吡啶氮结合释放出N2O,该反应路径所需克服的最大势垒为418.0kJ/mol。N2O可在焦炭表面分解释放出N2,异相分解反应为一步反应,计算所得活化能为100.8kJ/mol。N2O的异相生成和异相分解反应均为放热反应。采用经典过渡态理论计算得到了各路径中速率控制步骤的反应速率常数。低温条件下,N2O的异相分解反应速率略低于其异相生成速率,随着温度的升高,两者逐渐接近,说明高温条件有利于N2O的异相分解。  相似文献   

6.
通过PM3方法研究氯自由基与吡啶分子加成反应的结果表明,生成不同产物2-氯吡啶、3-氯吡啶、4-氯吡啶的每一个反应通道存在两个过渡态,生成2-氯吡啶反应路径主过渡态的能量及活化能量低,分别为-110293.6和139.2kJ/mol。反应优生成2-氯吡啶,与实验结果一致,生成2-氯吡啶反应过程(IRC)相关的键长,,键级和原子净电荷变化表明,吡啶环反应部位C原子与Cl加成形成C-Cl键主要与共轭双键断裂同步,而C-H键的断裂主要与共轭双键的重新形成同步,反应进程中氯原子净电荷从增加到减少的变化是氯原子诱导效应吸引电子和p-π共轭电荷平均分布等相互作用的结果。  相似文献   

7.
采用密度泛函理论(DFT)中的B3LYP方法对CuCl2催化的(2-甲基辛烷-2,3-二烯-4-基)磷酸乙酯氯代环化反应机理进行了理论研究.在6-31+G(d)基组水平上对反应机理中所有反应物、过渡态、中间体和产物进行了优化,通过能量和振动频率分析以及IRC计算证实了中间体和过渡态的合理性.在相同基组水平上应用自然键轨道(NBO)理论和分子中的原子(AIM)理论分析了复合物的成键特征和轨道间相互作用.反应物R和催化剂CuCl2可通过IA和IB两条可行反应通道生成中间体IM9,控制步骤活化能分别是129.61和142.10kJ/mol.中间体IM9到产物P也有两条反应路径PA和PB,控制步骤活化能分别是179.55和9.83kJ/mol.整个反应机理中IA→PB和IB→PB反应通道可能同时发生,反应控制步骤活化能最低反应通道为IA→PB.  相似文献   

8.
胡蓉蓉  程易  丁宇龙  谢兰英  王德峥 《化学学报》2007,65(18):2001-2006
利用产物瞬时分析反应器中进行的单脉冲实验, 考察了393~493 K温度范围内CO在Ag掺杂的氧化锰八面体分子筛上的吸附行为. 实验表明: CO在催化剂表面发生化学吸附, 并与晶格氧反应生成CO2. 通过对该过程反应物及产物脉冲响应曲线的模拟, 得到了各基元反应的动力学参数. CO和CO2在该催化剂表面的脱附活化能分别为83和31 kJ/mol, CO与晶格氧的反应活化能为116 kJ/mol.  相似文献   

9.
采用密度泛函理论(DFT)的计算方法, 研究了铂催化2-烯炔基苯甲醛水合环化反应的微观机理及化学选择性的根源. 计算结果表明, 首先炔基被催化活化而发生亲核环化生成吡喃铂中间体; 接着吡喃铂中间体与烯烃双键发生[3+2]环加成生成铂-碳卡宾复合物; 之后, 反应将沿2条路径进行, 得到产物3a或4a, 其中4a的生成需经两步水分子辅助的质子转移过程. 生成产物3a需要克服的活化能垒为146.5 kJ/mol; 对4a的生成, 烯醇式和酮式互变异构是决速步聚, 当一个水分子参与反应时, 对应的能垒为185.8 kJ/mol, 当2个和3个水分子参与反应时, 能垒分别降低到128.1和64.9 kJ/mol. 因此, 水分子参与催化得到产物4a的路径是有利的. 另外, 反应的选择性与在异构化过程中水的共催化作用有关. 以上结果很好地解释了实验现象, 并为铂催化水环化反应提供新的见解.  相似文献   

10.
碳前驱体CH3ArCH2NH2热解反应的热力学和动力学DFT研究   总被引:2,自引:0,他引:2  
在实验研究基础上,通过量子化学理论计算对碳前驱体CH3ArCH2NH2的热裂解机理作了进一步的研究.利用Gaussian98程序包中AM1方法及DFTUB3LYP/3-21G*方法,对化合物5种可能热裂解路径的热力学和动力学计算结果表明,CH3ArCH2NH2热裂解的主反应路径为生成自由基CH3ArCH2*和NH2*,其主反应路径AM1计算的活化能Ea=230.78kJ/mol,DFT计算的活化能Ea=321.18kJ/mol;比较键焓计算的数据与相应的实验数据,发现DFT计算结果与实验结果吻合得较好;通过分析优化的反应物及产物自由基的部分结构参数,了解了理论支持主反应的原因;计算的产物自由基的空间构型表明主反应路径生成的产物自由基相互间若进行稠环缩合反应,将获得分子平面取向性很好的稠环芳烃产物.  相似文献   

11.
采用本体聚合法合成了聚(γ-氯代吡啶);研究了其水解稳定性和热稳定性能。结果表明:聚(γ-氯代吡啶)难溶于普通有机溶剂,可溶于水并被水解断链;其水溶液粘度随放置时间延长而降低。聚(γ-氯代吡啶)热解反应级数为1.7;热解反应的活化能为97 kJ/mol。  相似文献   

12.
采用密度泛函理论方法 B3LYP/6-31G++(d,p),对纤维素的一个循环单体β-D-吡喃葡萄糖的热解反应机理进行了量子化学理论研究。设计了四种可能的热解反应途径,对各种反应的反应物、产物、中间体和过渡态的结构进行了能量梯度全优化,计算了各热解反应途径的标准动力学参数。计算结果表明,反应路径1中速控步的活化能为297.02 kJ.mol,反应路径2中速控步的活化能为284.49 kJ.mol,与反应路径3,4相比,反应路径1,2的反应能垒更低,是主要的热解反应通道,乙醇醛、1-羟基-2-丙酮、5-羟甲基糠醛、CO等小分子产物是热解的主要产物。这与相关实验结果分析是一致的。  相似文献   

13.
在CCSD(T)/6-311+G(3df,2p)//M06-2X/6-311+G(3df,2p)水平上研究了(H_2O)n(n=0~2)催化HS和HOCl的反应机理.结果表明,HS与HOCl反应中HS夺取HOCl上的H原子形成产物H_2S和ClO.在无水催化时,该反应存在2种不同的路径(分别经过过渡态TS1和TS2,二者互为顺反结构),对应的能垒分别为100.28和100.91kJ/mol,到达产物(H_2S+ClO)需吸收18.99kJ/mol能量,反应不易发生;在单个水分子参与时,水分子可通过形成弱相互作用或者作为H原子转移桥梁影响反应机理,获得了4种水催化路径,能垒(间于53.97~92.39kJ/mol之间)均低于无水催化过程.同时发现,在反应到达产物前,水分子可以与产物形成中间体IM,IM相对能仅为0.46kJ/mol,有利于产物形成;有2个水分子参与反应时,找到了3条催化路径,最优反应路径过渡态TS7的能垒为45.05kJ/mol,低于无水催化过程,相比单个水分子最优路径能垒(53.97kJ/mol)并无显著降低.  相似文献   

14.
丙三醇脱水反应机理的密度泛函理论研究   总被引:1,自引:0,他引:1  
黄金保  刘朝  魏顺安  黄晓露 《化学学报》2010,68(11):1043-1049
为了理解纤维素热解初期的脱水反应机理, 采用Gaussian 03程序中的密度泛函理论UB3LYP/6-31++G(d,p) 方法, 对模型化合物丙三醇脱水反应机理进行了量子化学理论研究. 设计了6种可能的脱水反应途径, 对各种反应的反应物、产物和过渡态的结构进行了能量梯度全优化, 计算了不同温度下各反应途径的标准热力学和动力学参数. 计算结果表明: 除了形成中间体IMa和IMb的反应外, 其它反应均为吸热反应; 温度高于400 K时, 丙三醇开始发生脱水反应; 与1-2-脱水反应相比, 1-3-脱水反应的反应势垒更低, 其活化能为233.75 kJ/mol; 当反应加入金属离子Li时, 有利于脱水反应的发生, 这时1-2-脱水反应的活化能为201.95 kJ/mol, 1-3-脱水反应的活化能为202.14 kJ/mol.  相似文献   

15.
氟氯酰与丙烷反应的密度泛函理论研究   总被引:1,自引:0,他引:1  
应用密度泛函理论(DFT), 对氟氯酰(ClF3O)引发丙烷(C3H8)反应生成C3H7自由基或丙醇等产物的机理进行了研究. 在B3PW91/6-311++G(d,p)水平上优化了9个不同反应通道上各驻点物(反应物、中间体、过渡态和产物)的几何构型, 并计算了它们的振动频率和零点振动能. 通过零点能校正计算了各反应路径的活化能, 并应用过渡态理论计算了各反应路径常温下的速率常数k. 计算结果表明: ClF3O与C3H8反应可经过不同路径生成HF, C3H7自由基和C1F2O自由基或C3H7OH和ClF3. 其中, 最可几反应路径为ClF3O分子的中间位F原子进攻丙烷β位H原子的反应, 活化能仅为7.54 kJ/mol, 速率常数为0.153×106 mol-1•dm3•s-1.  相似文献   

16.
用从头算方法在MP2 / 6 31G(d)水平上研究了C 甲基硝酮与丙烯腈 1,3 偶极环加成反应 ,该反应可生成endo 4,exo 4,endo 5 ,exo 5四种不同的产物 ,反应势垒分别为 8.35、17.2 3、-0 .18和 4.88kJ/mol。在C 甲基硝酮与丙烯腈接近的过程中 ,首先生成 3个不同的氢键复合物 ,相对能量为 -4 7.8、-4 6 .6和 -33 .7kJ/mol。由这 3个不同的氢键复合物导致了 4个不同的过渡态而形成 4个不同的产物  相似文献   

17.
在B3LYP/6-311++G(2df,p)水平下对单分子水参与下的CH_2SH+NO_2反应的微观机理进行了研究.为了获得更准确的能量信息,采用HL复合方法和CCSD(T)/aug-ccpvtz方法进行单点能校正.结果表明,加入单分子水后的CH_2SH+NO_2反应体系,共经过10条不同的反应路径,得到6种反应产物.与裸反应(CH_2SH+NO_2)相比,水分子在反应中起到了明显的正催化作用.不仅使生成产物trans-HONO的能垒(-52.84kJ·mol~(-1))降低了176.94kJ·mol~(-1),而且不需经过复杂的重排和异构化过程便可得到产物cis-HONO.在生成产物cis-HONO通道(Path3和Path4)中,活化能垒分别为143.65和126.70kJ·mol~(-1),而其裸反应的活化能垒却高达238.34kJ·mol~(-1).生成HNO_2的通道中(Path5和Path6)活化能垒分别为295.23和-42.19kJ·mol~(-1).其中Path6的无势垒过程使HNO_2也成为该反应的主要产物.另外,单分子水还可通过氢迁移的方式直接参与CH_2SH+NO_2的反应,活化能垒(TS7-TS10)分别为-10.62,151.03,186.22和155.10kJ·mol~(-1).除直接抽氢通道中的(Path8-Path10)外,其余反应通道均为放热反应,在热力学上是可行的.  相似文献   

18.
应用分子力学和量子力学联合的ONIOM2(B3LYP/6-31G(d,p):UFF)计算方法研究了H-ZSM-5分子筛上乙烯二聚反应的机理. 用40T簇模型模拟ZSM-5分子筛位于孔道交叉点的酸性位,对乙烯二聚过程的分步反应和协同反应两种机理进行了考察. 对于分步反应机理,乙烯分子首先通过π-氢键作用在酸性位形成稳定的吸附络合物,再进一步发生质子化并生成乙醇盐中间体,随后乙醇盐与第二个乙烯分子发生碳-碳键结合形成丁醇盐产物. 第一步质子化和第二步碳链聚合的活化能分别为152.88和119.45 kJ/mol, 表明乙烯质子化反应为速控步骤. 对于协同反应机理,乙烯质子化、碳-碳键和碳-氧键生成同时进行,生成丁醇盐,反应的活化能为162.30 kJ/mol, 略高于分步反应机理中的速控步骤. 计算结果表明这两种反应机理之间存在相互竞争.  相似文献   

19.
采用密度泛函理论研究了溴化亚铁催化芳基叠氮化物C—H键胺化生成苯并咪唑的反应机理.研究结果表明,溴化亚铁催化剂使反应由协同机理转变为分步机理,反应活化能降低了大约167kJ/mol.催化反应由氮气消去、C—N形成和2H-苯并咪唑异构化3个基元步骤组成.其中金属亚胺/金属氮烯FeNR PhNCPh进攻C形成C—N键是无能垒过程,且与金属氮烯中氮的电荷密切相关.氮气消去与2H-苯并咪唑异构化反应的能垒均在41~54kJ/mol之间.  相似文献   

20.
采用密度泛函方法对3-甲硫基-4-氰基-5-氨基吡唑与碘甲烷反应的机理进行了研究. 提出了两种可能的反应途径: 反应途径Ⅰ为反应物先脱去吡唑上的质子, 生成阴离子中间物, 然后碘甲烷分别进攻中间物吡唑环上的2个氮原子, 生成两种异构产物; 反应途径Ⅱ为反应物通过分子间氢转移存在两种异构体, 碘甲烷直接进攻每个异构反应物吡唑上的氮原子, 形成中间物, 然后脱去碘化氢, 生成产物. 计算结果表明, 途径Ⅱ应为主要反应途径. 还找出了两种异构产物间甲基迁移反应的过渡态, 得出该反应的活化能为278.5 kJ/mol, 在常温下甲基迁移反应不容易进行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号