首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nornicotine, an endogenous tobacco alkaloid and minor nicotine metabolite, can catalyze aldol reactions at physiological pH. Catalysis appears to be due to a covalent enamine mechanism, an unprecedented reaction with small organic molecule catalysts in aqueous buffer. Kinetic parameters for nornicotine as well as other related alkaloids were measured and demonstrate that both the pyrrolidine and pyridine rings are critical for optimal catalysis. Substrate compatibility of this catalyst and its implications in vivo are discussed.  相似文献   

2.
The reaction of N-bromosuccinimide (NBS) with propargyl alcohol in aqueous acidic medium is hydroxybromination. It is first order with respect to NBS, propargyl alcohol and H+, and inverse first order with respect to succinimide. The kinetic results point to solvated bromonium ion as the reactive species.  相似文献   

3.
《Tetrahedron: Asymmetry》2005,16(8):1411-1414
l-Valine was found to be an active catalyst in the asymmetric direct aldol reaction. The aldol reaction of a variety of aromatic aldehydes with acetone was catalyzed by 20 mol % of l-valine at 35 °C with the aldol products obtained in moderate to good yields (48–83%) and enantiomeric excesses (42–72%). The reaction was more efficient catalytically with best results observed in the presence of 1 mol equiv of water, with respect to the aldehyde, in either DMSO or DMF as solvent. The effect of water concentration on the reaction rate and enantioselectivity was also investigated. Thus, with increasing water concentration in DMSO there was decreasing enantioselectivity. However, the reaction in the presence of l-phenylalanine showed a lower level of reactivity and enantioselectivity to afford the aldol in 25% with 31% ee. In marked contrast, reaction with l-phenylglycine resulted in the negligible formation of the aldol (<5%). Our results, suggest a new strategy in the design of new bioorganic catalysts for direct asymmetric aldol reactions.  相似文献   

4.
Water was found to be a suitable solvent for the l-prolinethioamide catalysed aldol reaction of various cyclic ketones with aromatic aldehydes. Treatment of 4-nitrobenzaldehyde with as little as 1.2 equiv. of cyclohexanone in the presence of the protonated catalyst 1-TFA, afforded aldol products in high yields (up to 97%) with high diastereo- and enantioselectivity (up to >5 : 95 dr and 98% ee). The use of a high excess of ketone was avoided by conducting the aldol addition in the presence of water. Furthermore, different 'salting-out' and 'salting-in' salts were investigated and it was proven that the rate of acceleration and the stereochemical outcome of the reaction are affected by hydrophobic aggregation. Scope and limitation studies revealed that electron deficient aldehydes afforded aldol products with high stereoselectivity in the presence of 1-Cl(2)CHCO(2)H. It was shown that various cyclic ketones, under the conditions found, gave aldol products with fair yields, even if they are used in substoichiometric amounts (1.2 to 2.0 equiv.).  相似文献   

5.
(-)-Sparteine directed lithiation of N-Boc-pyrrolidine, alkylation with chloromethylboronate pinacol ester and acid-based deprotection provides homoboroproline HX salt in 94% ee, which is then an efficient enamine-type pyrrolidine catalyst in an asymmetric aldol reaction when neutralised and especially when esterified in situ with a tartrate ester, for example, providing 90% ee of the aldol adduct derived from acetone and p-nitrobenzaldehyde.  相似文献   

6.
Derivatives of 4-hydroxyproline with a series of hydrophobic groups in well-defined orientations have been tested as catalysts for the aldol reactions. All of the modified proline catalysts carry out the intermolecular aldol reaction in water and provide high diastereoselectivity and enantioselectivity. Modified prolines with aromatic groups syn to the carboxylic acid are better catalysts than those with small hydrophobic groups (1a is 43.5 times faster than 1f). Quantum mechanical calculations provide transition structures, TS-1a(water) and TS-1f(water), that support the hypothesis that a stabilizing hydrophobic interaction occurs with 1a.  相似文献   

7.
Aldol reaction of trimethylsilyl enolate with aldehyde proceeded in the presence of a catalytic amount of a Lewis base, N-methylimidazole, and lithium chloride in DMF at room temperature. Not only aryl aldehyde but also alkyl aldehyde provided the aldol product in satisfactory yields. The reaction was mild enough to apply to the aldehyde having HO, AcO, THPO, TBDMSO, MeS, pyridyl or olefinic group. Microwave irradiation accelerated the reaction.  相似文献   

8.
A remarkable enhancement in the rate of a TiCl4-mediated stereoselective vinylogous Mukaiyama aldol reaction (VMAR) using vinylketene silyl N,O-acetal 1 was observed in the presence of water.  相似文献   

9.
10.
《Tetrahedron: Asymmetry》2007,18(11):1265-1268
Polyleucines of various lengths act as enantioselective catalysts in the aldol condensation between cyclohexanone and a series of aromatic aldehydes, a reaction which may be of prebiotic significance.  相似文献   

11.
Simple modular di- and tripeptides with a primary amine at the N-terminus catalyze the aqueous asymmetric aldol reaction between unmodified ketones and aldehydes to furnish the corresponding beta-hydroxy ketones with up to 86% ee in water and 99% ee in aqueous media.  相似文献   

12.
A new class of bifunctional organocatalysts were synthesized and proved to be effective in catalyzing aldol reaction on water with high to excellent diastereo- and enantioselectivities.  相似文献   

13.
The mechanism of the three component base mediated Biginelli dihydropyrimidines synthesis was investigated using Accurate Mass TOF LC-MS-ESI and Tandem TOF LC-MS-ESI. We suggest hemiaminal as a possible intermediate leading to the formation of Biginelli product. Under our current experimental conditions we did not observe any bis-ureide as reported by ji et al.  相似文献   

14.
[structure: see text]. 1,1'-Binaphthyl-2,2'-diamine-based (S)-prolinamides in the presence of stearic acid were able to promote the direct aldol condensation of cyclohexanone and other ketones with different aldehydes in the presence of a massive amount of water in very good yields, high diastereoselectivity, and up to 99% ee. The behavior of both C2- and C1-symmetric catalysts in combination with different additives was investigated, and a preliminary experiment of recovering and recycling of the catalytic system was also attempted.  相似文献   

15.
Full details of our newly developed catalyses with asymmetric zinc complexes as mimics of class II zinc-containing aldolase are described. A Et(2)Zn/(S,S)-linked-BINOL complex was developed and successfully applied to direct catalytic asymmetric aldol reactions of hydroxyketones. A Et(2)Zn/(S,S)-linked-BINOL 1 = 2/1 system was initially developed, which efficiently promoted the direct aldol reaction of 2-hydroxy-2'-methoxyacetophenone (7d). Using 1 mol % of (S,S)-linked-BINOL 1 and 2 mol % of Et(2)Zn, we obtained 1,2-dihydroxyketones syn-selectively in high yield (up to 95%), good diastereomeric ratio (up to 97/3), and excellent enantiomeric excess (up to 99%). Mechanistic investigation of Et(2)Zn/(S,S)-linked-BINOL 1, including X-ray analysis, NMR analysis, cold spray ionization mass spectrometry (CSI-MS) analysis, and kinetic studies, provided new insight into the active oligomeric Zn/(S,S)-linked-BINOL 1/ketone 7d active species. On the basis of mechanistic investigations, a modified second generation Et(2)Zn/(S,S)-linked-BINOL 1 = 4/1 with molecular sieves 3A (MS 3A) system was developed as a much more effective catalyst system for the direct aldol reaction. As little as 0.1 mol % of (S,S)-linked-BINOL 1 and 0.4 mol % of Et(2)Zn promoted the direct aldol reaction smoothly, using only 1.1 equiv of 7d as a donor (substrate/ligand = 1000). This is the most efficient, in terms of catalyst loading, asymmetric catalyst for the direct catalytic asymmetric aldol reaction. Moreover, the Et(2)Zn/(S,S)-linked-BINOL 1 = 4/1 system was effective in the direct catalytic asymmetric aldol reaction of 2-hydroxy-2'-methoxypropiophenone (12), which afforded a chiral tetrasubstituted carbon center (tert-alcohol) in good yield (up to 97%) and ee (up to 97%), albeit in modest syn-selectivity. Newly developed (S,S)-sulfur-linked-BINOL 2 was also effective in the direct aldol reaction of 12. The Et(2)Zn/(S,S)-sulfur-linked-BINOL 2 = 4/1 system gave aldol adducts anti-selectively in good ee (up to 93%). Transformations of the aldol adducts into synthetically versatile intermediates were also described.  相似文献   

16.
17.
《Tetrahedron: Asymmetry》2006,17(14):2108-2119
Protonated pyrrolidine based small organic molecules have been designed and evaluated for the asymmetric direct aldol reaction in water. The designed organocatalysts are multifunctional in nature and exploit the combined effect of hydrogen bonding and hydrophobic interactions for enantioselective catalysis in water. As a result a unique direct asymmetric aldol reaction in water catalyzed by a small organic molecule having an amide linkage has been developed. The developed catalyst affords chiral β-hydroxyketones in good yields (93%) and enantioselectivities (upto 62%) in water.  相似文献   

18.
Protonated chiral prolinamide organocatalysts have been shown to catalyze an enantioselective direct aldol process in water to provide the aldol product in high yield and good enantioselectivity. The two diastereomeric catalysts (S,R)-4b and (S,S)-4c show different reactivity.  相似文献   

19.
A series of acid-base bifunctional catalysts were prepared, and high yields and excellent selectivity in the aldol condensation were achieved through adjustment of the matching between the acid and the base. The results indicated that proper matching between the acid and the base can both efficiently activate the substrate through cooperative activation and inhibit dehydration without diminishing the yield.  相似文献   

20.
Aldol condensation is an important synthetic method widely used in organic synthesis. Development of catalytic methods that avoids the production of stoichiometric by-products while maintaining high levels of control available from stoichiometric processes provides an atom-economical alternative for these important transformations. Indeed, numerous catalysts for the aldol reaction have been reported in recent years, including enzymes, catalytic antibodies, organometals, organocatalysts, and small molecules. The direct aldol reaction is the most important reaction employed by synthetic chemists and is common in nature. Recently, various Lewis acids have been examined as catalysts for aldol reactions, but aldol condensation in a micellar medium has not been studied in detail so far. Because of stronger environmental concerns, organic reactions in green media, especially in water, have attracted more attention. It is believed that micelles act as nano reactors to enhance the reaction rates and give very good to excellent yields of end products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号