首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Process optimisation for increasing the response speed of optical driving liquid crystal cell was investigated in this paper. It is demonstrated that by filling LC in atmosphere condition rewriting time could be decreased to 6 s with good repeatability. Increasing the spin coating speed, the rewriting time could also decrease the azimuthal anchoring energy, but it will cause non-continuous film form of alignment layer, which causes large speed dispersion that is not good for practical use. Serial experiments show that with smaller azimuthal anchoring energy the rewriting time could be smaller. The results demonstrate that with proper fabrication process of alignment layer for liquid crystal optical rewritable e-paper, azimuthal anchoring energy could be adjusted to an optimal value, which is beneficial for achieving fastest rewriting speed and at the same time strong enough to well align LC.  相似文献   

2.
A new type of photo-crosslinkable methacrylate polymer liquid crystal (PLC) with a coumarincontaining mesogenic side group was synthesized and applied as the photoalignment layer for low molecular mass nematic liquid crystals. Linearly polarized ultraviolet light was directed onto a thin film of PLC under various exposure conditions. When a film was irradiated at room temperature, a small negative optical anisotropy was generated due to angular-selective photo-crosslinking. In contrast, when the film was exposed near the clearing temperature of the PLC, the induced anisotropy was positive due to thermally enhanced photoinduced reorientation of the side groups. The aggregation of the mesogenic groups was also observed when the irradiation was carried out in the liquid crystalline temperature range of the PLC. The LC alignment on the photoreacted film was greatly dependent on these irradiation conditions. It was made clear that the LC alignment was regulated by the interaction among the LC, the photo-crosslinked side groups and the remaining mesogenic side groups, and that the aggregated mesogenic groups inhibited the LC alignment.  相似文献   

3.
《Liquid crystals》2001,28(8):1171-1176
A new type of photo-crosslinkable methacrylate polymer liquid crystal (PLC) with a coumarincontaining mesogenic side group was synthesized and applied as the photoalignment layer for low molecular mass nematic liquid crystals. Linearly polarized ultraviolet light was directed onto a thin film of PLC under various exposure conditions. When a film was irradiated at room temperature, a small negative optical anisotropy was generated due to angular-selective photo-crosslinking. In contrast, when the film was exposed near the clearing temperature of the PLC, the induced anisotropy was positive due to thermally enhanced photoinduced reorientation of the side groups. The aggregation of the mesogenic groups was also observed when the irradiation was carried out in the liquid crystalline temperature range of the PLC. The LC alignment on the photoreacted film was greatly dependent on these irradiation conditions. It was made clear that the LC alignment was regulated by the interaction among the LC, the photo-crosslinked side groups and the remaining mesogenic side groups, and that the aggregated mesogenic groups inhibited the LC alignment.  相似文献   

4.
Controlling and optimising the alignment of liquid crystals is a crucial process for display application. Here, we investigate the effects of humidity and surface types on photoalignment of an azo-dye brilliant yellow (BY). Specifically, the effect of humidity on the photoalignment of BY was studied at the stage of substrate storage before coating, during the spin-coating process, between film coating and exposure, and after exposure. Surprising results are the drastic effect of humidity during the spin-coating process, the humidity annealing to increase the order of the BY layer after exposure and the dry annealing to stabilise the layer. Our results are interpreted in terms of the effect of water on the aggregation of BY. The type of surface studied had minimal effects. Thin BY films (about 3 nm thickness) were sensitive to the hydrophilicity of the surface while thick BY films (about 30 nm thickness) were not affected by changing the surface. The results of this paper allow for the optimisation of the BY photoalignment for liquid crystal display application as well as a better understanding of the BY photoalignment mechanism.  相似文献   

5.
《Liquid crystals》1998,25(6):757-764
A new kind of aligning material for liquid crystal cells, ladder-like polysilsesquioxanes (LPS) grafted with cinnamoyl side groups, has been developed to improve the thermal stability of the photoalignment layer. The LC aligning ability of the LPS-based alignment layers, fabricated by linearly polarized UV-induced polymerization (LPP), was characterized by polarizing optical microscopy, conoscopic observations and electro-optic response measurements. In particular, a practical and severe annealing test was adopted to examine the thermal stability of the alignment layer; this showed that even when LC cells were annealed at 100 C (much higher than the clearing point of the LC) for several hours, good LC orientation could remain when the cell was cooled to a constant measurement temperature. The results confirmed that the photoalignment layers exhibited not only good LC aligning ability, but also excellent thermal stability, so heralding their potential application in LCDs.  相似文献   

6.
The surface of a silica substrate plate was modified with a cinnamate moiety having a triethoxysilyl group at the ortho-position through a spacer. The plate was employed to assemble a cell filled with a nematic liquid crystal and exposed to linearly polarized 259 nm light to obtain homogeneous alignment. The direction of the alignment was perpendicular to an electric vector of the actinic light. On the contrary, the exposure of the cell to polarized light at 330 nm did not result in homogeneous alignment while the actinic light caused the disappearance of the chromophore. This wavelength effect on the azimuthal photoalignment suggests that the surface-assisted liquid crystal orientation is triggered by the reorientation of the E-isomer of the cinnamate group. This is in marked contrast to a proposed mechanism of a photoalignment by a thin film of a poly(vinyl cinnamate) derivative (Schadt et al., 1993, Jpn J. appl. Phys., 31, 2155); homogeneous alignment is induced by the axially selective photodimerization of cinnamate groups.  相似文献   

7.
A periodic surface structure was prepared on a pre-rubbed polyimide (PI) film surface with a pulsed UV laser polarized perpendicular to the rubbing direction. The experimental results demonstrate that the rubbing-induced molecular anisotropic orientation was relaxed by the pulsed laser irradiation, and the laser induced molecular orientation was perpendicular to the line of the laser-induced periodic structure. The dichroism of the anisotropy of molecular orientation increased with the increase of laser energy. Since the direction of the laser-induced molecular anisotropy was perpendicular to the surface groove direction of the pre-rubbed PI surface, the effects of surface microgroove and anisotropic molecular orientation of the PI chain on liquid crystal (LC) alignment can be distinguished from each other. LC alignment was investigated by evaluating the anchoring energy of the PI surface, which was calculated according to Berreman's theory using the twist angle of the LC in the cells. The experimental results demonstrate that the exact alignment direction of the LC molecules is determined by the relative strength of both factors.  相似文献   

8.
A novel photoalignment film for liquid crystals (LC) was prepared based on layer-by-layer self-assembly of photosensitive long side-chain cinnamate polyelectrolyte. A series of self-assembled films with different methylene spacer groups was prepared and used as alignment film. The film became anisotropic, and could induce uniform alignment of LC after irradiation by linearly polarised ultraviolet light (LPUVL). The effects of spacer chain lengths of the cinnamoyl polycations on the structure and photoalignment properties of the self-assembled film were studied. The polycation films with longer spacer chain obtained a larger dichroic ratio after LPUVL irradiation. The contrast ratio (T max/T min) of the LC cell increased with spacer chain length increase. However, it was found that the thermal stability of PSS/PACPYn films decreased with increasing chain length of polycation.  相似文献   

9.
A periodic surface structure was prepared on a pre-rubbed polyimide (PI) film surface with a pulsed UV laser polarized perpendicular to the rubbing direction. The experimental results demonstrate that the rubbing-induced molecular anisotropic orientation was relaxed by the pulsed laser irradiation, and the laser induced molecular orientation was perpendicular to the line of the laser-induced periodic structure. The dichroism of the anisotropy of molecular orientation increased with the increase of laser energy. Since the direction of the laser-induced molecular anisotropy was perpendicular to the surface groove direction of the pre-rubbed PI surface, the effects of surface microgroove and anisotropic molecular orientation of the PI chain on liquid crystal (LC) alignment can be distinguished from each other. LC alignment was investigated by evaluating the anchoring energy of the PI surface, which was calculated according to Berreman's theory using the twist angle of the LC in the cells. The experimental results demonstrate that the exact alignment direction of the LC molecules is determined by the relative strength of both factors.  相似文献   

10.
We demonstrate that photostimulated self-assembly, running in parallel with molecular photoorientation in the top layer of the aligning polymer film, breaks the bulk molecular order mainly determined by the symmetry of irradiation. This may substantially modify liquid crystal (LC) alignment. Depending on the chemical composition of the liquid crystal, the self-assembled layers may influence either homeotropic or planar LC alignment with extremely weak azimuthal anchoring. Effective self-assembly occurs in polymers having side chain chromophores with flexible spacers and polar terminal groups.  相似文献   

11.
In this paper, the polyanion-containing cinnamoyl group (PACSS-CF3) was self-assembled with diazoresin (DR) to form a kind of stable covalent ultrathin film by irradiation with 365?nm UV light. The photoalignment properties of the DR/PACSS-CF3 covalent film were investigated. The covalent film was found to have anisotropy after irradiation by 297?nm linearly polarised ultraviolet light (LPUVL), and could induce uniform alignment of liquid crystals (LCs). The pretilt angle of the LC was 2.5°. The stability of the film was enhanced by the covalent bonds. The films were thermally stable to 180°C. Polarised UV-Vis spectroscopy was utilised to investigate the photochemical process of the covalent film. It was found that cinnamoyl moieties parallel to the polarisation direction of the LPUVL were consumed by the photoreaction faster than those perpendicular to the polarisation direction. It can be concluded that the selective photoreaction induced the anisotropy of the films. The anisotropic films induced the homogeneous alignment of LC.  相似文献   

12.
We synthesised a series of vitamin-based and renewable tocopherol-substituted polystyrene (PTOC#, # = 20, 40, 60, 80 and 100), where # is the molar content of tocopherol moiety, using polymer analogous reactions to investigate their liquid crystal (LC) alignment properties. In general, the LC cell fabricated using the polymer film having a higher molar content of tocopherol side group showed vertical LC alignment behaviour. The vertical alignment (VA) behaviour was well correlated with the surface energy value of these polymer films. For example, VA was observed when the surface energy values of the polymer were smaller than about 35.22 mJ/m2 generated by the nonpolar tocopherol moiety having long and bulky carbon groups. Good electro-optical characteristics, such as voltage holding ratio and residual DC voltage, and aligning stabilities at 200°C and ultraviolet irradiation of 10 J/cm2 were observed for the LC cells fabricated using PTOC100 as a LC alignment layer. Therefore, it was first found that the renewable tocopherol-based materials can produce an eco-friendly vertical LC alignment system.  相似文献   

13.
Alkylsilane self-assembled monolayers (SAMs) on oxide substrates are commonly used as liquid crystal (LC) alignment layers. We have studied the effects of alkyl chain length, photolytic degradation, and mechanical rubbing on polar and azimuthal LC anchoring. Both gradient surfaces (fabricated using photolytic degradation of C18 SAMs) and unirradiated SAMs composed of short alkyl chains show abrupt transitions from homeotropic to tilted alignment as a function of degradation or chain length. In both cases, the transition from homeotropic to tilted anchoring corresponds to increasing wettability of the SAM surfaces. However, there is an offset in the critical contact angle for the transition on gradient vs unirradiated SAMs, suggesting that layer thickness is more relevant than wettability for LC alignment. Mechanical rubbing can induce azimuthal alignment along the rubbing direction for alignment layers sufficiently near the homeotropic-to-planar transition. Notably, mechanical rubbing causes a small but significant shift in the homeotropic-to-tilted transition, e.g., unrubbed C5 SAMs induce homeotropic anchoring, but the same surface after rubbing induces LC pretilt.  相似文献   

14.
A series of poly(methyl methacrylate) derivatives containing polyhedral oligomeric silsesquioxane (POSS) groups (MCP#) were synthesised via free radical polymerisation (FRP) using methacryl isobutyl POSS (MA-POSS) and methyl methacrylate as monomers to investigate liquid crystal (LC) alignment property of these polymer films. The LC cells made from the films of the polymers having 100 mol% of MA-POSS units (MCP100) showed vertical LC alignment having a pretilt angle of about 90°. The vertical LC alignment behaviour on the MCP100 film was ascribed to the very hydrophobic MCP100 surface having the surface energy value smaller than about 23 mJ/m2 generated by the nonpolar bulky POSS group. Good electro-optical characteristics, such as voltage holding ratio (VHR) and residual DC voltage (R-DC), were observed for the LC cells fabricated using MCP100 as a LC alignment layer.  相似文献   

15.
Patterned homeotropic alignment using nanoparticles (NPs) was achieved using inkjet printing. Two types of gold NPs, one smaller and one larger in core diameter (2 and 5 nm) capped with a monolayer of dodecanethiol, and emissive carbon dots with a core diameter of 2.5 nm featuring a mixed ligand shell of carboxylic acid groups and aliphatic hydrocarbon chains were tested on both rigid glass and flexible polycarbonate substrates. To define the director across the entire cell and not just in the NP-printed areas, alignment ‘underlayers’ were tested, and 30° obliquely evaporated SiOx as alignment ‘underlayer’ generally provided the best results with the highest quality of the homeotropic alignment as well as the best contrast at the boundary between printed and non-printed (i.e. homeotropic and planar) domains of the fabricated cells. We also report that the chemical nature of the nematic liquid crystal (LC) used, the number of layers printed and the composition of the nano-ink need to be adjusted to obtain pattern alignment devices that positively benefit from both the properties of the LC and the nanomaterial printed.  相似文献   

16.
Theoretical and experimental analysis of the rewriting time of liquid crystal (LC) optical rewritable (ORW) e-paper was conducted. The equations of rewriting time of alignment molecule SD1 film with and without interaction with LC based on diffusion model were derived, which shows that the rewriting time of LC ORW e-paper could be shortened by enlarging light intensity or decreasing azimuthal anchoring energy. The rewriting time of pure SD1 films and LC ORW cells was measured under different light intensities. And LC ORW cells with different azimuthal anchoring energy were prepared for rewriting time measurement. A good agreement between experimental and theoretical results was obtained, which indicates that using larger light intensity and making LC cell with smaller azimuthal anchoring energy, ORW rewriting time could be decreased to the amount suitable for practical use.  相似文献   

17.
Highly sensitive photoalignment of liquid crystals (LCs) can be realized by axis-selective triplet energy transfer. Addition of a triplet photosensitizer (phosphorescent donor) into a photocrosslinkable polymer tethering E-cinnamate side chains ensures dramatic enhancement of photosensitivity to generate the optical anisotropy of polymer film and surface-assisted LC photoalignment. Photoirradiation of triplet photosensitizer-doped polymer films with linearly polarized 365 nm light for the selective excitation of triplet sensitizer gives rise to optical anisotropy of cinnamates as a result of axis-selective triplet energy transfer. By analyzing phosphorescence spectra with theoretical Perrin's formula, we find that triplet energy transfer is efficient within a radius of ~0.3 nm from the triplet photosensitizer. Such photoaligned polymer films can be used for the surface-assisted orientation photocontrol of not only calamitic LC, but also discotic LC, even for extremely low exposure energies. The present procedure would be greatly advantageous for high-throughput fabrication of optical devices by photoalignment techniques.  相似文献   

18.
We investigated the characteristics of a solution-processed indium-doped zinc oxide (In:ZnO) film formed via ion-beam (IB) irradiation as a liquid crystal (LC) alignment layer. The In:ZnO film was deposited using solution processing and cured at various temperatures. Uniform LC alignment was observed at all curing temperatures in cross-polarised optical microscopy images. A regular pre-tilt angle supported these results and showed homogeneous LC alignment. Several surface analyses were conducted to evaluate the effect of IB irradiation on the In:ZnO film surface. X-ray diffraction analysis showed an amorphous structure both before and after IB irradiation, and physical surface reformation was observed using atomic force microscopy. Root mean square surface roughness was reduced and a smooth surface was achieved after IB irradiation. X-ray photoelectron spectroscopy was used to detect chemical surface reformation. It was found that the IB irradiation broke the metal-oxide bonds and increased the occurrence of oxygen vacancies, which affected the van der Waals forces between the LC molecules and the In:ZnO film surface. Electrical performance was observed to identify the possibility of using the In:ZnO film in LC applications. Enhanced electro-optical performance was measured and zero residual DC voltage which was verified using a capacitance-voltage curve was achieved.  相似文献   

19.
一种新型的氢键自组装液晶光控取向膜   总被引:2,自引:0,他引:2  
报道了一种新型的以氢键为驱动力的液晶自组装光控取向膜, 研究了薄膜的制备方法与光敏特性. 通过聚(4-乙烯基吡啶)中的吡啶基团与光敏聚丙烯酰氧基肉桂酸间的氢键作用制备了LBL(layer-by-layer)型的自组装多层膜, 制备过程的紫外-可见光谱表明, 该组装过程为逐层、均匀沉积过程. 傅里叶变换红外光谱表明, 多层膜的成膜驱动力为氢键. 用线性偏振紫外光辐照该薄膜, 多层膜中与光矢量方向匹配的光敏基团发生[2+2]环加成反应, 形成表面张力各向异性的薄膜. 用该薄膜作为向列相液晶的取向膜制成平行液晶器件, 在偏光显微镜下观察, 发现获得了均一、稳定的取向效果.  相似文献   

20.
Photo-reactive bisazide in a polymer matrix containing acryloyl groups on the side chain was investigated as a photoalignment layer for polymerizable liquid crystals (PLC). We found the thin film of bisazide (2,6-bis(4-azidobenzylidene)-4-methyl-1-cyclohexanone) in a polymer matrix, irradiated by linearly polarised ultraviolet light (LPUVL), was able to homogeneously align PLC. The LPUVL irradiation dose changed the orientation direction of the PLC on the thin film of bisazide in the polymer matrix. In addition, the direction of the slow axis for the retardation of the photoalignment layer changed from parallel to perpendicular to the LPUVL electric field with the irradiation dose. From these results, it was suggested that the PLC was likely to be aligned along the slow axis of the retardation of the photoalignment layer. We concluded that the key mechanism that changed the direction of the slow axis in a plane was the photoreaction of azide–acrylate at low irradiation dose and that of bis(benzylidene)cyclohexanone at high irradiation dose. Although the photoalignment as a result of a simple photo cross-linking was previously little known except for photo-dimerisation, we revealed that the photoaddition of azide–acrylate is able to achieve the photoalignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号