首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal and magnetic measurements have been performed on several YBa2Cu3O7−δ compounds, some ones showing a large content of high Tc (93 K) superconducting phase. A jump in the specific heat ΔCp, is well evidenced at the transition allowing a determination of the ratio ΔCp/Tc ≅ 23 ± 5. mJ/ (mole Cu)K2. In addition, an estimation of the γ value (≅ 11 mJ/(mole Cu). K2) has been drawn from the determination of the electronic entropy at Tc. The samples have been characterized by susceptibility, magnetization and resistivity experiments. The critical field slopes at Tc were found to be dHc1/dT ≅ 17 Oe/K and dHc2/dT ≅ 20 kOe/K. The results are discussed in the framework of the Ginzburg-Landau theory.  相似文献   

2.
The specific heat of single phase YBa2Cu3O7-δ has been measured using non-adiabatic method between 4.2K and 120K. There is a specific heat anomaly Δc at 90K (about 3.2% of total specific heat) approximately, due to superconducting transition. From the measured value of ΔC and transition temperature Tc, the electronic density of state at Fermi level N(EF) and Sommerfeld parameter γ calculated are 2.55±0.30states/eV.Cu-atom and 2.77±0.30 mJ/mole.K2, respectively. The experimental result of N(EF) is consistent with that of the band calculation by Mattheiss. The Debye temperature above Tc in this material deduced from Debye function is about 340K. Below 20K, the relation C=γ'T+βT3 is satisfied. But the value of γ' is smaller. That means, most of the electrons have formed superconducting Cooper pairs which give no contribution to specific heat below 20K.  相似文献   

3.
本文给出了Ti-Pd系合金样品的低温比热的测量结果,得出样品Ti0.92Pd0.08及Ti0.8Pd0.2的电子比热系数r分别为5.89mJ/mol·K2和4.78mJ/mol·K2,显然比纯Ti的r值3.32mJ/mol·K2高得多。因此,它们的费密面的电子态密度也比纯Ti的高,这正是Ti-Pd系合金的超导转变温度Tc比纯Ti的有较大幅度提高的原因。 关键词:  相似文献   

4.
We have measured the low-temperature specific heat cp of single-crystalline samples of USb and UTe between 0.1 and 12 K. From the experimental data we deduce values for the electronic specific-heat parameter γ of 0.2 mJ/mole K2 and 10.3 mJ/mole K2 for USb and UTe, respectively. cp data below 1 K reveal the onset of nuclear specific heat with decreasing temperature. In our temperature range, this contribution is much stronger for USb than for UTe.  相似文献   

5.
The specific heat of superconducting oxide compound, YBa2Cu3O7 ?x , is studied using a quasi-adiabatic calorimeter from 4.2 to 60 K. The analysis of the specific heat data below 15 K gives a value of 17 mJ/mole K2 for the electronic heat capacity coefficient. The value ofθ D(0) is determined to be 397±8 K. The variation ofθ D with temperature was calculated in the temperature range 4.2 to 60 K.  相似文献   

6.
Icosahedral (I) Pd0.588U0.206Si0.206 can be obtained from melt-spun amorphous (A) ribbons by annealing. The specific heatC (measured betweenT=0.1 K and 20 K) shows very similar behavior for both phases. The main features ofC are as follows. (i) The vibrational heat capacityC ph dominatesC at highT.C ph is almost identical in both phases, in agreement with recent inelastic neutron scattering data. (ii) Shallow maxima in (C–C ph)/T vs.T are found at 5.4 and 4.3 K forI andA phases, respectively, associated with magnetic order. These maxima are suppressed by 20% in an applied magnetic field of 6 T. (iii) A large quasi-linear contribution is observed with a low-T coefficient =165 mJ/mole U K2 for theI phase and =120 mJ/mole U K2 for theA phase. In the low-T region,C is hardly affected by a field of 6 T. This hints at the formation of a narrow 5f band with a comparable density of states for bothI andA phases.  相似文献   

7.
Electrical resistivity, magnetic susceptibility and specific heat measurements on a new compound, UPd2Sn, reveal that this material exhibits valence fluctuation or Kondo lattice phenomena below a characteristic temperature ∼ 10 K. In particular, the electronic specific heat coefficient appears to be strongly temperature dependent with a maximum of ∼ 270 mJ/mole U−K2 at 9.7 K and an extrapolated value of ∼ 70 mJ/mole U−K2 at 0 K. The compound UPd2Sn was expected to crystallize in the same structure as the family of cubic Heusler alloys, but instead, crystallized in a more complicated structure which appears to be orthorhombic. The compound can be characterized as a nonmagnetic, nonsuperconducting heavy electron material.  相似文献   

8.
N Nambudripad  S K Dhar 《Pramana》1987,29(4):L433-L435
We have measured the heat capacity of superconducting, single phase YBa2Cu3O7 in the temperature range 2 to 18 K. An extrapolation of the data between 4 and 9 K gives aC/T (T → 0) of ∼ 25 mJ/mole K2. The Debye temperature obtained from the high temperature linear portion ofC/T vsT 2 plot is 325 K.  相似文献   

9.
The electrical resistivity and the thermopower are measured on the single phase superconductor Ba2YCu3O9-δ (δ=2.1). The results indicate that the temperature dependences of the resistance and thermopower exhibit typical metallic behaviour, and the sample conducts via electrons at high temperatures. The behaviour of the thermopower can be described with Mott's semi-classical model. The specific heat of electrons in normal state has been estimated 780mJ/K·mole at 200K, i.e. γ=3.9mJ/K2·mole. Unusual phonon-drag effect is observed above the superconducting transition temperature Tc. Below Tc, the electrical resistivity and the thermopower all drop to zero corresponding to a superconducting ground state.  相似文献   

10.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

11.
UPd2Al3 is a new heavy-fermion superconductor with a recordT c of 2 K. In addition, it shows a transition to long-range antiferromagnetic order atT N =14 K. Its Sommerfeld coefficient is reduced from p =210mJ/K2 mole in the paramagnetic to 0=150mJ/K2 mole in the antiferromagnetic phase.  相似文献   

12.
Specific heat studies of the high-Tc superconducting compound YBa2Cu3O7−x with bulk transition temperature at 92K are reported. A distinct anomaly of electronic origin in the specific heat is observed with granular-like behavior corresponding to a Sommerfeld constant γ = 7±2mJ(moleCuK2)±1 Debye temperature (φo ≈ 400K) is obtained by fitting the experimental data with the theoretical Debye specific heat.  相似文献   

13.
The effects of orientation and subcooling on pool boiling of the HFE-7100 dielectric liquid near atmospheric pressure (0.085 MPa) from a 10 × 10 mm smooth copper surface are investigated experimentally. Results are obtained for inclination angles θ = 0° (upward-facing), 30°, 60°, 90°, 120°, 150°, and 180° (downward-facing) and liquid subcoolings ΔTsub = 0, 10, 20, and 30 K. Increasing θ decreases the saturation nucleate boiling heat flux at high surface superheats (ΔTsat > 20 K), but increases it only slightly at lower surface superheats. The critical heat flux (CHF) decreases slowly with increasing θ from 0° to 90°, and then deceases faster with increasing θ to 180°. CHF increases linearly with increased subcooling, but the rate increases from 0.016 K?1 at 0° to 0.048 K?1 at 180°. At θ = 0° and ΔTsub = 30 K, CHF is ~ 36 W/cm2 and 24.45 W/cm2 for saturation boiling, while at θ = 180° CHF = 10.85 W/cm2 at ΔTsub = 30 K and only 4.30 W/cm2 at saturation. The developed correlation for CHF of HFE-7100, as a function of θ and ΔTsub, is within ±10% of the present data. The recorded still photographs of the boiling surface in the experiments illustrate the effects of liquid subcooling and surface orientation at different nucleate boiling heat fluxes and surface superheats on vapor bubble accumulation and/or induced mixing at the surface.  相似文献   

14.
For the first time, the specific heat of single phase, stoichiometric, high transition temperature (21.8 K) A-15 Nb3Ge has been measured. From the data between 4 and 29 K, the linear term coefficient, γ, of the specific heat is found to be 30.3±1. mJ/mole-K2 and the Debye temperature, ?D, is 302±2 K. The bulk energy gap parameter, 2Δ/kTc, is found to be 4.2±0.2, in agreement with tunneling measurements.  相似文献   

15.
The specific heat and magnetic susceptibility of the transition metal oxide ReO3 have been measured. The specific heat results give a Debye temperature ΘD = 460 ± 10 K and an electronic specific heat coefficient γ = 6.45 ± 0.07 cal/mole K2 which are in good agreement with similar measurements on the cubic sodium tungsten bronzes. The magnetic susceptibility and the electronic contribution to the specific heat are within a few percent of the corresponding parameters calculated from the free electron model with one electron per unit cell. Our results show that ReO3 behaves much like a simple metal. No experimental evidence for narrow d-band effects was observed.  相似文献   

16.
Uranium Laves phase UTi2 does not exist in a pure form, but can be stabilised by the presence of hydrogen, which can be absorbed in concentration exceeding 5?H atoms/f.u. Low temperature specific heat, magnetic susceptibility, and resistivity indicate that UTi2H5 is a spin fluctuator close to the verge of magnetic ordering. Its susceptibility follows at high temperatures the Curie–Weiss law with U effective moment µeff[ ?= 3.1?µB/U and paramagnetic Curie temperature Θp = ?200 K. The temperature dependence of specific heat exhibits a pronounced and weakly field dependent upturn in Cp/T versus T below 10 K reflecting the effect of spin fluctuations. It can be described by an additional T½ term. The Sommerfeld coefficient γ = 256?mJ/mol K2 classifies the compound as a mid-weight heavy fermion. Spin fluctuations are affecting also electrical and thermal transport and thermoelectric power, which all resemble UAl2. A lattice anomaly at ≈ 240?K, attributed to the melting of hydrogen sublattice, reflects in most of bulk properties.  相似文献   

17.
The phase boundary of the binary liquid system CS2+CH3NO2 is studied over nearly six decades in reduced temperature 3×10−6<ε=(T CT)/T C<2×10−1 and over the composition range 8-98 mole % of CS2. The critical parameters areT C=335.132K andx C=57.34 mole % of CS2. A single critical exponentβ=0.315±0.004 fits the observations over the entire range with no indication ofβ increasing to the classical value of 1/2 far away fromT C. The diameter of the coexistence curve shows a rectilinear behaviour only far away fromT C. NearT C, the deviation ΔX from the rectilinear law seems to fit a curve of the form ΔX=fε7/8 exp (− h), the derivative of which has a singularity like that of specific heat. An ambiguity in the analysis of the data in terms of mole fractions and volume fractions is pointed out. It is also suggested that the curvature of the diameter may be much weaker in a liquid-gas system and hence might have escaped detection.  相似文献   

18.
The heat capacity of two scandium samples containing 1.6 and <5 ppm atomic Fe was measured from 1 to 20 K. The weighted values for γ and θD are: 10.340 ± 0.018 mJ/g-at. K2 and 346.1 ± 0.9 K, respectively. This is the first time anyone has obtained the same heat capacity results on two different scandium samples. The iron impurity concentration appears to be critical.  相似文献   

19.
The heat capacity of the layer compound, tetrachlorobis (methylammonium) manganese II, (CH3NH3)2MnCl4, has been measured over the range 10K <T<300K. In this region, two structural phase transitions have been observed previously by other techniques: one transition is from a monoclinic low temperature (MLT) phase to a tetragonal low temperature (TLT) phase, and the other is from TLT to an orthorhombic room temperature (ORT) phase. The present experiments have shown that the lower transition (MLT→TLT) occurs at T = 94.37±0.05K with ΔHt = 727±5 J mol?1 and ΔSt = 7.76±0.05 J K?1 mol?1, and the upper transition (TLT→ORT) takes place at T = 257.02±0.07K with ΔHt = 116±1J mol?1 and ΔSt = 0.451±0.004 J K?1mol?1. These results are discussed in the light of recent measurements on (CH3NH3)2CdCl4, and also with regard to a recent theoretical model of the structural phase transitions in compounds of this type.In addition to the structural phase transitions, (CH3NH3)2MnCl4 also undergoes magnetic ordering at T < 150K. The magnetic component to the heat capacity, as deduced from a corresponding states comparison of the heat capacity of the present compound with that of the Cd compound, is shown to be consistent with the behaviour expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

20.
We have measured the propagation velocities of bulk acoustic waves in the simple cubic transition-metal oxide ReO3 by ultrasonic pulse propagation. The elastic stiffness constants at 300 K are: C11 = (47.9 ± 1.4) × 1011 dyne/cm2; C44 = (6.1 ± 0.2) × 1011 dyne/cm2; C12 = (?0.7 ± 2.8) × 1011 dyne/cm2. These elastic constants indicate a crystal with highly anisotropic shear propagation. The Debye temperature of the compound from these measurements is 528 K. This value is somewhat higher than previous results from specific heat and resistivity determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号