首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of partial replacement of Y site with Ca or Ba site with Sr on the thermal and electrical properties of YBa2Cu3O7?δ superconductors was investigated. For Y(Ba1?XSrX)2Cu3O7?δ system, the characteristic enhancement of the thermal conductivity κ(T) below the transition temperature Tc was decreased more slowly by substitution than that for (Y1?XCaX)Ba2Cu3O7?δ system. Electron-phonon interaction in these systems were discussed based on the phonon heat conduction model under the weak coupling d-wave energy gap.  相似文献   

2.
In this paper, we first give a concise overview of recent experimental and theoretical work dealing with “electronic liquid-crystal states” which spontaneously break different symmetries of the CuO2 layers of high-T c cuprates, with an emphasis on evidence in the spin excitation spectrum. Then we describe the importance of using twin-free samples to look for evidence for fourfold symmetry breaking in the spectrum and explain the preparation procedure to obtain such samples. We present inelastic neutron scattering results for moderately underdoped YBa2Cu3O6.6(T c = 61  K) and nearly optimally doped YBa2Cu3O6.85(T c = 89  K). In YBa2Cu3O6.6, the dispersion topology changes when heating above T c from an hourglass shape with constricted, commensurate resonance peak to a “Y”-shape without resonance anomaly. This change, and the fact that the low-energy signal above T c can be described by an incommensurate, quasi-one-dimensional distribution, indicates a competition of superconductivity with an electronic liquid-crystal state. We then show a striking analogy between the difference signal I(5  K) − I(70  K) and the downward dispersing resonance mode in YBa2Cu3O6.85. We therefore argue that a resonance mode only emerges below T c, irrespective of the doping level. We finally discuss the implications of our results for the different scenarios invoked to explain the electronic liquid-crystal state in cuprates.  相似文献   

3.
The magnetization of the fine-grained high-temperature superconductor (HTSC) YBa2Cu3O y is experimentally investigated at T < T c . A distinctive feature of this material is the increased oxygen content in CuOδ planes. The magnetization decrease with an increase in δ is revealed. This correlation indicates that during interplane oxygen redistribution, which is characteristic of fine-grained samples, the oxygen content in the chain planes increases due to its reduction in the superconducting CuO2 planes.  相似文献   

4.
Influence of an external magnetic field on the reluctance of the YBa 2 Cu 3 O x ceramics is investigated. A significant reluctance of the oxygen-deficient ceramics (with critical temperature Tc < 77 K) is established for a sample in the normal state at T < 160 K. It is demonstrated that after ceramics annealing that restores the oxygen content to a nearly optimum value, the magnetic field has essentially no effect on the sample reluctance at temperatures exceeding Tc. To explain the revealed mechanisms, a model involving ferromagnetic clusters effectively decreasing the free carrier density is used. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 68–71, April, 2007.  相似文献   

5.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

6.
The NMR spectra of 63Cu and 65Cu natural copper isotopes in a LiCu2O2 multiferroic single crystal compound have been measured above and below the temperature of magnetic phase transition (T c = 23 K) in zero magnetic field and in applied magnetic field H 0 = 94 kOe parallel to the c axis of the crystal. In LiCu2O2 below T c, a complicated helical magnetic structure with the magnetic moment of copper ions Cu2+ varying along the chain according to the harmonic law with the wave vector being incommensurate to the crystal lattice constants has been revealed. The experimental results have been successfully interpreted using the model based on the planar helical magnetic structure. It has been found that the plane of rotation for Cu2+ magnetic moments in LiCu2O2 does not coincide at H 0 = 0 with the ab plane. The high magnetic field (H 0 = 94 kOe) applied along the c axis of the single crystal does not affect the spatial orientation of the plane of rotation.  相似文献   

7.
It has been experimentally established that the nanoscale structural inhomogeneity, inherent in fine-grained (0.4 ≤ 〈D〉 ≤ 2μm) high-temperature superconductors YBa2Cu3O y (y ≈ 6.92, T C ≈ 92 K) and manifesting itself in partial interplane redistribution of oxygen [1, 2], changes the density of states near the Fermi level and decreases the coherence length and density of superconducting carriers in CuO2 planes. The revealed relationship between the changes in these characteristics with respect to their equilibrium values corresponds to the relationship that might occur for conventional superconductors.  相似文献   

8.
The vortex lattice of the YBa2Cu4O8 high-temperature superconductor is studied in the basal plane of monocrystalline samples using the decoration technique in a field interval of 40–600 Oe. Vortex lattice anisotropy (field-independent “compression” of a regular hexagonal vortex cell in the poorly conducting direction by a factor of about 1.3) is detected. Resistivity anisotropy ρ a b measured at temperatures from T c to room temperature is 16–9. Possible reasons for the discrepancy between our results and the available data are discussed.  相似文献   

9.
Magnetization M(H,T) in magnetic fields H up to 90 kOe and at temperatures 2 K ≤ T < T c (where Tc is the superconducting transition temperature), along with magnetic susceptibility χ(T) in the normal state T c < T < 400 K for optimally oxygen-doped samples of YBa2Cu3O6.92 with varying degrees of defects in the crystal structure, are studied to determine the influence of structural inhomogeneity on the electron systems characteristics of cuprate superconductors. It is shown that the existence of structural inhomogeneity of samples leads to the manifestation of peculiarities appropriate to pseudogap regime in their properties.  相似文献   

10.
The electrophysical properties and structure of the nonstoichiometric high-temperature superconductor YBa2Cu3O y restored at T = 930–950°C after low-temperature decomposition (T = 200°C) into phases different in the oxygen content have been studied. It has been shown that, unlike heat treatments at T ≤ 900°C, the superconducting properties are almost completely restored for 3–5 h during grain recrystallization, which is impossible at lower temperatures. After short-term annealing at T = 930–950°C (for 1–2 h), the ceramic material still contains a significant number of structural defects, most likely, in cation sublattices. These defects can contribute to the pinning of magnetic vortices, which substantially increases the critical current density in magnetic fields up to 2 T as compared to ceramic materials produced by the conventional technology.  相似文献   

11.
The results of the ab initio FLAPW-GGA computations of the band structure of the recently synthesized layered tetragonal (space group I4/mmm) arsenide (Sr3Sc2O5)Fe2As2 as a possible basis phase of a new group of FeAs superconductors are presented. For (Sr3Sc2O5)Fe2As2, the energy bands, electron state density distributions, Fermi surface topology, low-temperature electron specific heat, molar Pauli paramagnetic susceptibility, and effective atomic charges have been determined. These results are discussed compared to similar data for the layered tetragonal crystals LaFeAsO, SrFeAsF, SrFe2As2, and LiFeAs that are the basis phases of the recently discovered high-temperature (T C ~ 26–56 K) 《1111》, 《122》, and 《111》 FeAs superconductors.  相似文献   

12.
Static magnetic susceptibility χ(T) in the normal state (Tc ≤ T ≤ 400 K) and specific heat C(T) near temperature Tc of the transition to the superconducting state are experimentally studied for a series of fine crystalline samples of high-temperature YBa2Cu3Oy superconductor, having y and Tc close to optimal but differing in the degree of nanoscale structural disordering. It is shown that under the influence of structural disordering, there is enhancement of anomalous pseudogap behavior of the studied characteristics and a significant increase in the width of the pseudogap.  相似文献   

13.
Vortex excitations have been detected at temperatures both below and above the critical temperature when investigating local magnetic fields on the surface of a Bi2Sr2Ca2Cu3O10 single crystal by means of an electron paramagnetic resonance (EPR) probe. A thin layer of a diphenyl picrylhydrazyl organic radical deposited on the crystal surface is used as the EPR probe. A narrow EPR signal makes it possible to detect weak distortions of the magnetic field appearing at TT c. The analysis of the temperature dependences of the resonance field and the EPR linewidth is thebasis of the assumption of the vortex nature of magnetic excitations in this temperature range.  相似文献   

14.
The electronic structure of the recently discovered superconductor SrPt2As2 with T c = 5.2 K has been calculated in the local-density approximation. Despite its chemical composition and crystal structure are somehow similar to FeAs-based high-temperature superconductors, the electronic structure of SrPt2As2 is very much different. The crystal structure is orthorhombic (or tetragonal if idealized) and has layered nature with alternating PtAs4 and AsPt4 tetrahedra slabs sandwiched with Sr ions. The Fermi level is crossed by Pt-5d states with rather strong admixture of As-4p states. Fermi surface of SrPt2As2 is essentially three-dimensional, with complicated sheets corresponding to multiple bands. We compare SrPt2As2 with 1111 and 122 representatives of FeAs-class of superconductors, as well as with isovalent (Ba,Sr)Ni2As2 superconductors. Brief discussion of superconductivity in SrPt2As2 is also presented.  相似文献   

15.
Compounds of the series Hg(1?x?y) BixPbyBa2CaCu2O6+δ (0≤x,y≤0.5) are synthesized directly from the metal oxides without using a precursor. Structural, and morphological investigations are made by x-ray diffraction, SEM and EDXA techniques. Bi and Pb substitution suppresses or enhances the simultaneous formation of Hg-1201 and Hg-1223 phase. Multiphase Hg0.8Bi0.2Ba2CaCu2O6+δ has a maximum Tc of 134K. For Bi and Pb concentrations higher than 0.5 mole, non-superconducting phases are formed.  相似文献   

16.
Thermal decomposition of the nonstoichiometric high-temperature superconductor YBa2Cu3O6.8 at a temperature of 200°C in air has been investigated using the full-profile analysis of X-ray diffraction lines. Two mechanisms of decomposition are revealed. The first mechanism, i.e., separation into two phases with a different oxygen content, occurs continuously. The second mechanism, i.e., disordering of the heavy atoms Y, Ba, Ba, Y along the crystallographic axis c, begins to occur after a 20- to 35-h annealing and progresses with a further annealing.  相似文献   

17.
Polyaniline/Zn0.5Cu0.5Fe2O4 nanocomposite was synthesized by a simple, general and inexpensive in-situ polymerization method in w/o microemulsion. The effects of polyaniline coating on the magnetic properties of Zn0.5Cu0.5Fe2O4 nanoparticles were investigated. The structural, morphological and magnetic properties of as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, scanning electron microscopy (SEM) and magnetic measurements. The morphology analysis confirmed that polyaniline was deposited on the porous surface of magnetic Zn0.5Cu0.5Fe2O4. It was shown that the saturation magnetization and coercivity of Zn0.5Cu0.5Fe2O4 decreased after polyaniline coating, which can be interpreted by the interparticle dipole–dipole interactions that contributed to magnetic anisotropy and changed the magnetic properties of the nanoparticles. PACS  74.25.Ha; 81.05.-t; 81.05.Lg  相似文献   

18.
A comparative analysis of the results of the X-ray and Mösbauer studies of the high-temperature superconductor (HTSC) YBa2Cu3O y and YBa2Cu3 ? x 57Fe x O y (x = 0.015, T c ≈ 91.5 K) samples with different average grain sizes <D> in the micron and submicron ranges has been performed. The regularities in the change in the lattice parameter c and in the degree of occupation of different oxygen sites in the CuOδ chain planes taking place at the decrease in <D> have been studied. The quantitative interrelation between the parameter c and the oxygen content δ in the CuOδ planes exceeding the amount of the mobile oxygen due to the interplane oxygen redistribution is established.  相似文献   

19.
We analyze the possibility of obtaining M-type hexagonal ferrites of barium, strontium, and lead with multiferroid properties with the help of ceramic technology. Using the modified ceramic technology (especially pure initial raw materials, admixture of B2O3, and sintering in the oxygen atmosphere), we obtained for the first time the BaFe12O19 and SrFe12O19 samples with intense multiferroid properties at room temperature. At the same time, the employed technology does not make it possible to obtain PbFe12O19 samples exhibiting ferroelectricity. The multiferroid characteristics of experimental samples are compared with the characteristics of classical high-temperature multiferroic BiFeO3 and with the characteristics of BaFe12O19, SrFe12O19, and PbFe12O19 ferrite ceramics obtained in accordance with polymer precursor technology. We propose a mechanism explaining multiferroid properties of the hexagonal ferrite ceramic samples and note the importance of our results for applications.  相似文献   

20.
An extended ASYNNNI model, that beside nearest-neighbour and next-nearest neighbour O-O interactions in the basal plane also includes interactions between the three nearest oxygen atoms, is used to describe the statistics of CuO chain fragmentation and to calculate doping and T c in YBa2Cu3O6+x . Calculations were made by the Monte Carlo method employing the recently proposed charge transfer model that assumes only chains whose length is equal to, or exceeds, a characteristic (critical) length, l cr , can provide holes to the layers and contribute to doping p. The obtained p(x) is then combined with a universal T c versus p relation to yield T c (x) characteristics that correlate remarkably with those reported in recent experiments. The best coordination between theoretical and experimental T c (x) characteristics has been achieved for l cr = 2, implying that only isolated basal plane oxygen atoms (trivial chains) do not contribute holes to CuO2 layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号