首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new compound Tl6[Ge2Te6] was prepared by thermal synthesis from the elements. The material is triclinic, space group P1, with a = 9.471(2), b = 9.714(2), c = 10.389(2) Å, α = 89.39(1), β = 97.27(1), γ = 100.79(1)°, and Z = 2. The crystal structure was determined from single-crystal intensity data measured by means of an automated four-circle diffractometer and refined to an R value of 0.053 for 1831 observed reflections. Tl6[Ge2Te6] is characterized by Ge2Te6 units with GeGe bonds which are linked into a three-dimensional structure by Tl atoms coordinated to essentially six Te atoms. The most important mean distances are dGeGe) = 2.456 Å, d(GeTe) = 2.573 Å, and d(TlTe) = 3.515Å. The lone 6s electron pairs of the thallium(I) atoms exhibit significant stereochemical activity. Tl6[Ge2Te6] represents a new structure type.  相似文献   

2.
The crystal structure of a double salt of sodium and cesium with 2-diphenylacetyl-1,3-indandione of the composition [Cs2Na(H2O)2(C23H16O3)(C23H15O3)3] (I) was studied by X-ray crystallography. The crystals of I are monoclinic, Z = 2, space group P21/n, a = 10.212(2) ?, b = 23.479(5) ?, c = 15.638(3) ?, β = 98.30(03)°. The compound contains [Cs2NaO10] trimers, in which the central Na atom shares two edges with two Cs atoms through deprotonated bridging ligands. The trimers are connected to adjacent trimers by paired C-H...O contacts to form layers. The layers form an infinite open framework via hydrogen bonds between the oxygen atoms of keto groups of noncoordinated indandione moieties and water molecules that enter the cesium coordination sphere in trimers of the adjacent layers.  相似文献   

3.
Summary. New selenidogermanates [Mn(en)3]2Ge2Se6 (en = ethylenediamine) and [Fe(dien)2]2Ge2Se6 (dien= diethylenetriamine) were synthesized by the reaction of germanium dioxide, elemental selenium, and transition metal chlorides in respectively en and dien. Both compounds crystallize in the monoclinic space group P21/n with two formula units in the unit cell, and consist of discrete [Ge2Se6]4− anions with transition metal complex cations as counter ions. The [Ge2Se6]4− anion is formed by two GeSe4 tetrahedra sharing a common edge to form a planar Ge2Se2 four-membered ring. The [Mn(en)3]2+ and [Ni(dien)2]2+ complex cations are in distorted octahedral geometry. In both selenidogermanates extensive N–H···Se hydrogen bonding contacts lead to 3-dimensional network structures. The band gaps of 2.36 and 2.25 eV were derived from optical absorption spectra. Thermogravimetric analysis shows that the first compound decomposes in two steps under the nitrogen stream, while the second exhibits a one-step decomposition process.  相似文献   

4.
Complexes [Ph3MeP]3[Sb3I12]Me2C=O (I), [Ph3MeP]3[Sb2I9] (II), and [Ph3MeP]2[SbI5] (III) were obtained via the reaction of triphenylphosphonium iodide with antimony triiodide in acetone in 1:1, 3:2 and 2:1 molar ratios. Reaction of the complex III with antimony triiodide (1:1) affords [Ph3MeP]3[Sb3I12] (IV). The structure of the obtained complexes was confirmed by X-ray analysis.  相似文献   

5.
Single crystals of diammonium tetranitratouranylate (NH4)2[UO2(NO3)4] (I) and a new diammonium tetranitratouranylate complex with 18-crown-6 [(NH4)(18C6)]2[UO2(NO3)4] (II) have been synthesized by the reaction of diaquadinitratouranyl tetrahydrate with ammonium nitrate in a nitric acid solution and the reaction of the same reagents with 18C6 in an ethanol solution, respectively. The X-ray diffraction analysis of compounds I and II has been performed. Crystals of compounds I and II are monoclinic, Z = 2, space group P21/n, a = 6.4075(5) ?, b = 7.7851(7) ?, c = 12.4461(12) ?, β = 101.239(1)°, V = 608. 94(9) ?3 for compound I and a = 10.542(9) ?, b = 8.590(8) ?, c = 22.5019(19) ?, β = 101.632(1)°, V = 2058.3(3) ?3 for compound II. The [UO2(NO3)4]2− complex anion in compounds I and II contains two monodentate and two bidentate cyclic nitrato groups, and the coordination number of uranyl is 6. The 18C6 molecule in the structure of compound II has the classic crown conformation and combined with the ammonium ion by three hydrogen bonds. Compounds I and II formed by electrostatic attraction forces between counterions are stabilized by (NH4+)NH...O(NO3) interionic hydrogen bonds.  相似文献   

6.
Heterometallic chloride complexes [Mo5NbI8Cl6] n (n = 2, 3) are synthesized. The crystal structures of their salts are determined: for (Ph4P)2[Mo5NbI8Cl6] (I), triclinic crystal system, spacegroup P [`1]\bar 1, a = 10.9886(6), b = 11.4604(5), c = 13.4343(7) ?, α = 66.124(2), β = 86.892(2), γ = 86.490(2)°, Z = 1, V = 1543.35(13) ?3; and for (4-MePyH)5[Mo5NbI8Cl6]Cl2 (II), monoclinic crystal system, space group C2/m, a = 16.4937(4), b = 14.7335(3), c = 11.6534(3) ?, β = 99.8750(10)°, Z = 2, V = 2789.94(11) ? The geometric parameters of compounds I and II and the conditions for the formation of the complexes with the charges −2 and −3 are discussed.  相似文献   

7.
Double complex salts (DCSs) [Co(NH3)6][Fe(CN)6] (I) and [Co(NH3)6]2[Cu(C2O4)2]3 (II) and complex [Co(NH3)6]2(C2O4)3·4H2O (III) are synthesized and investigated by single crystal XRD, crystal optics, and elemental analysis. The crystalline phases of I, II, and III (R-3, P21/c, and Pnnm space groups respectively) have the following crystallographic characteristics: a = 10.9804(2) ?, b = 10.9804(2) ?, c = 10.8224(3) ?, V = 1130.03(4) ?3, Z = 3, d x = 1.65 g/cm3 (I); a = 9.6370(2) ?, b = 10.2452(2) ?, c = 13.2108(3) ?, V = 1932.90(9) ?3, Z = 2, d x= 1.97 g/cm3 (II), and a = 11.7658(3) ?, b = 11.7254(3) ?, c = 14.1913(4) ?, V = 1304.34(5) ?3, Z = 2, d x = 1.68 g/cm3 (III). This paper investigates the products of DCS thermolysis in a hydrogen atmosphere: the intermetallic compound CoFe with the bcc parameter a = 2.852 ? for I and a heterogeneous mixture of Co and Cu in the decomposition of II. The coordinated CN and C2O42− groups then turn into NH3, hydrocarbons, and CO2. The dominant hydrocarbon is methane.  相似文献   

8.
The complexes of CdI2 with acetamide (AA) and propaneamide (PrA) of the composition [Cd(AA)6][Cd2I6] (I) and [Cd(PrA)6][Cd2I6] (II) were synthesized and studied by X-ray diffraction. Isostructural crystals I and II are triclinic: a = 7.285(3) and 8.066(6), b = 11.266(4) and 11.649(3), c = 11.554(3) and 12.063(2) ?, α = 100.96(2)° and 102.74(2)°, β = 91.59(2)° and 91.73(4)°, γ = 100.76(3)° and 101.05(4)°, V = 912.5 and 1081.9 ?3, respectively; space group , Z = 1. Original Russian Text ? I.A. Zamilatskov, E.V. Savinkina, D.V. Al’bov, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 6, pp. 407–410.  相似文献   

9.
The crystals of [C9H7NC3H5]Cu(SCN)2 (I) and [C9H7NC3H5]Cu2(SCN)3 (II) were obtained in the reaction of N-allylquinolinium bromide with CuSCN and NH4SCN in a methanol solution. The crystals of I are triclinic: space group P , Z = 2, a = 8.619(2), b = 8.755(2), c = 10.463(3) ?, α = 77.18(3), β = 69.95(3), γ = 79.38(3)°, V = 718.1(3) ?3. The crystals of II are opthorhombic: space group P212121, Z = 4, a = 5.744(2), b = 16.799(4), c = 17.980(5), V = 1735.9(9) ?3. The structure of compound I is built of infinite linear {Cu(SCN)2} anions and the N-allylquinolinium cations bonded additionally by relatively weak hydrogen contacts C-H...S. The [C9H7NC3H5]+ cations are located between the corrugated layers of the {Cu2(SCN)3} anions in compound II. As in the case of the previously studied copper(I) halide complexes, the C=C bond of the allyl group in the N-allylquinolinium cation of complexes I, II does not interact with Cu(I). Original Russian Text ? A.V. Pavlyuk, V. Kinzhybalo, T. Lis, M.G. Mys’kiv, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 10, pp. 764–769.  相似文献   

10.
Ag2Nb[P2S6][S2] (1) was obtained from the direct solid state reaction of Ag, Nb, P2S5 and S at 500 °C. KAg2[PS4] (2) was prepared from the reaction of K2S3, Ag, Nd, P2S5 and extra S powder at 700 °C. Compound 1 crystallizes in the orthorhombic space group Pnma with a=12.2188(11), b=26.3725(16), c=6.7517(4) Å, V=2175.7(3) Å3, Z=8. Compound 2 crystallizes in the non-centrosymmetric tetragonal space group with lattice parameters a=6.6471(7), c=8.1693(11) Å, V=360.95(7) Å3, Z=2. The structure of Ag2Nb[P2S6][S2] (1) consists of [Nb2S12], [P2S6] and new found puckered [Ag2S4] chains which are along [001] direction. The Nb atoms are located at the center of distorted bicapped trigonal prisms. Two prisms share square face of two [S22−] to form one [Nb2S12] unit, in which Nb-Nb bond is formed. The [Nb2S12] units share all S2− corners with ethane-like [P2S6] units to form 14-membered rings. The novel puckered [Ag2S4] chains are composed of distorted [AgS4] tetrahedra and [AgS3] triangles that share corners with each other. These chains are connected with [P2S6] units and [Nb2S12] units to form three-dimensional frame work. The structural skeleton of 2 is built up from [AgS4] and [PS4] tetrahedra linked by corner-sharing. The three-dimensional anionic framework contains orthogonal, intersecting tunnels directed along [100] and [010]. This compound possesses a compressed chalcopyrite-like structure. The structure is compressed along [001] and results from eight coordination sphere for K+. Both compounds are characterized with UV/vis diffuse reflectance spectroscopy and compound 1 with IR and Raman spectra.  相似文献   

11.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

12.
Conditions of the hydrothermal synthesis of scandium hydrogen orthophosphate Li2Sc[H(PO4)2] (I) have been studied and the range of its monomineral crystallization have been determined. The existence of bound hydrogen in the structure has been confirmed by IR spectroscopy. The crystals of I are monoclinic: a = 4.857(1) ?, b = 8.198(2) ?, c = 7.664(2) ?, β = 104.097(5)°, space group P21/n, Z = 2. The structure was solved by direct methods and refined by full-matrix least-squares calculation in the anisotropic approximation for all non-hydrogen atoms, R obs = 0.0215, R wall = 0.0335 (705 reflections with I > 3σ(I)). The basis of the structure is a mixed anionic para-framework {Sc[H(PO4)2]}3∞2−, composed of vertex-sharing ScO6 octahedra and PO4 tetrahedra. The structural unit of the para-framework is the microblock [ScP6O24] with symmetry $ \bar 1 $ \bar 1 . The microblocks are condensed in columns running in the [100] direction to form through channels filled with Li+ cations (CN = 5). A model with splitting of the hydrogen atom position implying the formation of a strong asymmetric nonlinear H-bond has been suggested and considered. The compound is stable to 400°C. The results of studying compound I are presented together with the data on the Fe- and In-containing Li2MIII[H(PO4)2] analogues.  相似文献   

13.
Na12Ge17 is prepared from the elements at 1025 K in sealed niobium ampoules. The crystal structure reinvestigation reveals a doubling of the unit cell (space group:P21/c; a = 22.117(3)Å, b = 12.803(3)Å, c = 41.557(6)Å, β = 91.31(2)°, Z = 16; Pearson code: mP464), furthermore, weak superstructure reflections indicate an even larger C‐centred monoclinic cell. The characteristic structural units are the isolated cluster anions [Ge9]4— and [Ge4]4— in ratio 1:2, respectively. The crystal structure represents a hierarchical cluster replacement structure of the hexagonal Laves phase MgZn2 in which the Mg and Zn atoms are replaced by the Ge9 and Ge4 units, respectively. The Raman spectrum of Na12Ge17 exhibits the characteristic breathing modes of the constituent cluster anions at ν = 274 cm—1 ([Ge9]4—) and ν = 222 cm—1 ([Ge4]4—) which may be used for identification of these clusters in solid phases and in solutions. Raman spectra further prove that Na12Ge17 is partial soluble both in ethylenediamine and liquid ammonia. The solution and the solid extract contain solely [Ge9]4—. The remaining insoluble residue is Na4Ge4. By heating the solvate Na4Ge9(NH3)n releases NH3 and decomposes irreversibly at 742 K, yielding Na12Ge17 and Ge.  相似文献   

14.
Single crystals of (H3O)[UO2(CH3COO)3] (I) and (NH(C2H5)3)[UO2(CH3COO)3] (II) are synthesized, and their structures are studied by X-ray crystallography. Compound I crystallizes in the tetragonal crystal system with the unit cell parameters a = 13.70640(10) ?, c = 27.5258(5) ?, V = 5171.14(11) ?3, space group I41/a, Z = 16, R = 0.0238. The crystals of compound II are orthorhombic with the parameters a = 13.3685(3) ?, b = 10.6990(3) ?, c = 12.2616(3) ?, V = 1753.77(8) ?3, space group Pna21, Z = 4, R = 0.0228. The uranium-containing structural units of crystals I and II are [UO2(CH3COO)3] island mononuclear groups belonging to the A B301(A = UO22+, B01 = CH3COO) crystal-chemical group of uranyl complexes. [UO2(CH3COO)3] complexes are linked into a three-dimensional framework by electrostatic interactions with the outer-sphere cations and by hydrogen bonds involving the hydrogen atoms of hydroxonium (I) or triethylammonium (II) with the oxygen atoms of the acetato groups.  相似文献   

15.
A new chiral coordination polymer [Cd2(C4H4O6)2] n (I) has been synthesized and characterized by elemental analysis, IR, and X-ray single-crystal diffraction. The X-ray diffraction analysis reveals that I crystallizes in the orthorhombic system, space group P212121. The adjacent Cd(1) and Cd(2) centers are linked by one tartrate ligand through tridentate coordination to form a dimer. The dimer is further connected to the other dimer via tartrate ligands to construct an infinite three-dimensional (3D) coordination polymer. The unit cell parameters for I: a = 7.4984(17), b = 7.9106(18), c = 19.560(4) ?, V = 1160.2(5) ?3, Z = 4.  相似文献   

16.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

17.
Single crystals of three new strontium nitridogermanates(IV) were grown in sealed niobium ampules from sodium flux. Dark red Sr4[GeN4] crystallizes in space group P21/c with a = 9.7923(2) Å, b = 6.3990(1) Å, c = 11.6924(3) Å and β = 115.966(1)°. Black Sr8Ge2[GeN4] contains Ge4– anions coexisting with [GeIVN4]8– tetrahedra and adopts space group Cc with a = 10.1117(4) Å, b = 17.1073(7) Å, c = 10.0473(4) Å and β = 115.966(1)°. Black Sr17Ge6N14 features the same anions alongside trigonal planar [GeIVN3]5– units. It crystallizes in P1 with a = 7.5392(1) Å, b = 9.7502(2) Å, c = 11.6761(2) Å, α = 103.308(1)°, β = 94.651(1)° and γ = 110.248(1)°.  相似文献   

18.
The interaction of the Co(iso-Bu2PS2)2 chelate with 4-NH2Py afforded a paramagnetic complex [Co(4-NH2Py)(iso-Bu2PS2)2] (μeff = 4.53 BM). Single crystals of [Ni(4-NH2Py)2(iso-Bu2PS2)2] (I) and [Co(4-NH2Py)(iso-Bu2PS2)2] (II) were grown and used for X-ray diffraction investigation (X8 APEX diffractometer, MoK α radiation). Crystals I are monoclinic with unit cell parameters a = 12.5336(5) Å, b = 9.4356(4) Å, c = 16.4095(6) Å; β = 111.351(1)°; V = 1807.4(1) Å3; Z = 2, ρ = 1.223 g/cm3, space group P21/n. Crystals II are triclinic with unit cell parameters a = 8.7572(4) Å, b = 9.6934(6) Å, c = 18.665(1) Å; α = 79.374(2)°, β = 87.049(2)°, γ = 75.640(2)°; V = 1508.6(1) Å3; Z = 2, ρ = 1.259 g/cm3; space group . The structures of I and II are formed by isolated mononuclear molecules. The coordination unit is NiN2S4 (octahedron) in I and CoNS4 (tetragonal pyramid) in II. The 4-NH2Py molecule is coordinated through the N atom of the heterocycle. Electronic spectroscopy data for II agree with the symmetry of the NS4 polyhedron found by X-ray diffraction (XRD) analysis. The noncoordinated amine groups link the complex molecules via N-H...S hydrogen bonds. __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 6, pp.1072–1080, November–December, 2005. Original Russian Text Copyright ? 2005 by T. E. Kokina, L. A. Glinskaya, E. A. Sankova, R. F. Klevtsova, and S. V. Larionov  相似文献   

19.
The organo-templated iron(III) borophosphate (C3H12N2)FeIII 6(H2O)4[B4P8O32(OH)8] was prepared under mild hydrothermal conditions (at 443 K) and the crystal structure was determined from single crystal X-ray data at 295 K (monoclinic, P21/c (No. 14), a=5.014(2) Å, b=9.309(2) Å, c=20.923(7) Å, β=110.29(2)°, V=915.9(5) Å3, Z=2, R1=0.049, wR2=0.107 for all data, 2234 observed reflections with I>2σ(I)). The title compound contains a complex inorganic framework of borophosphate trimers [BP2O8(OH)2]5− together with FeO4(OH)(H2O)- and FeO4(OH)2-octahedra forming channels with ten-membered ring apertures in which the diaminopropane cations are located. The magnetization measurements confirm the Fe(III)-state and show an antiferromagnetic ordering at TN≈14.0(1) K.  相似文献   

20.
The synthetic approach towards molecules that contain Ge atoms with oxidation state 0, and which are exclusively connected to other Ge atoms, is explored by using anionic clusters extracted from binary solids. Besides providing a novel variable method for the introduction of alkenyl moieties to [Ge9] cluster compounds, this work expands the spectrum of mixed-functionalized [Ge9] cluster anions, which are suitable for the straightforward synthesis of zwitterionic compounds upon coordination to metal cations. In detail, the synthesis of a series of mixed-functionalized [Ge9] clusters is reported, including [Ge9{Si(TMS)3}3PRRI] (R=tBu, RI=(CH2)3CH=CH2; 2 ) and [Ge9{Si(TMS)3}2PRRI] (R and RI: alkyl, alkenyl, aryl, aminoalkyl; 3 a to 11 a , TMS: (trimethyl)silyl). In 2 and 3 a , pentenyl functionalization of the [Ge9] clusters was achieved by reaction of the novel chlorophosphine tBu{(CH2)3CH=CH2}PCl ( 1 ) with silylated [Ge9] clusters. Furthermore, the reactivity of the cluster anions 3 a to 11 a towards NHCDippMCl (NHCDipp=1,3-di(2,6-diisopropylphenyl)imidazolylidine; M=Cu, Ag) showed a dependency on the steric demand of the phosphine either zwitterions ( 3 -MNHCDipp to 7 -MNHCDipp) featuring P–M interactions are formed, or Ge–M coordination ( 8 -MNHCDipp to 11 -MNHCDipp) occurs. For M=Ag, the formation of zwitterionic complexes was unequivocally proven by NMR investigations showing 1J(31P-107Ag/109Ag) spin-spin coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号