首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Yonghua Sun  Zhijun Xi  Zuolong Shi 《Talanta》2009,79(3):676-1696
A simple and sensitive liquid chromatographic method coupled with electrogenerated chemiluminescence (ECL) was described for the separation and quantification of naproxen in human urine. The method was based on the ECL of naproxen in basic NaNO3 solution with a dual-electrode system. Factors affected the ECL emission were investigated. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of naproxen in the range of 4.0 × 10−8 g mL−1 to 2.0 × 10−6 g mL−1 and the detection limit was 1.6 × 10−8 g mL−1 (S/N = 3). Application of the method to the analyses of naproxen in human urine proved feasible.  相似文献   

2.
In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ can be compensated by adding a small amount of Ru(bpy)32+ into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 × 10−8 g mL−1 to 1.0 × 10−6 g mL−1 and the detection limit was 3 × 10−9 g mL−1 (S/N = 3). The as-prepared ECL detector displayed good sensitivity and stability.  相似文献   

3.
Yan Xue  Guixin Li 《Talanta》2007,72(2):450-456
In this paper, it was found that the hydrophobic ion-associated complex of the molybdophosphoric heteropoly acid with protonated butyl-rhodamine B (BRhB) could be formed and was further selectively extracted into the bulk of the paraffin oil-based carbon paste electrode (CPE). At the same time, compared with other modifiers, the benzene-modified CPE created a suitable electrochemiluminescence (ECL) reaction microenvironment for electro-oxidation BRhB to produce the stronger ECL signal when a 1.30 V electrolytic potential was applied to the CPE in the alkaline medium. Based on these findings, a selective and sensitive ECL method for indirectly detecting phosphate was developed. Under the optimum experimental conditions, the ECL intensity was linear with the concentration of phosphate in the range of 2.0 × 10−10 to 1.0 × 10−8 g mL−1. The detection limit was 8.0 × 10−11 g mL−1. The proposed method has been applied successfully to the analysis of phosphate in the water samples.  相似文献   

4.
Li Y  Lu J 《Analytica chimica acta》2006,577(1):107-110
A simple, rapid and sensitive flow injection chemiluminescence (CL) method is described for the determination of naproxen. It was found that strong CL signal was generated when naproxen was mixed with KMnO4 and Na2SO3 in neutral aqueous medium. Under the optimum experimental conditions, the CL intensity was linearly related to the concentration of naproxen from 4.0 × 10−9 to 1.0 × 10−6 g mL−1 (r = 0.9993). The detection limit was 2 × 10−9 g mL−1 naproxen, the relative standard deviation for 1.0 × 10−7 g mL−1 naproxen solution was 1.5% (n = 11) and the sampling frequency was 120 h−1. The method was applied to the determination of naproxen in pharmaceutical preparation with satisfactory results. The mechanism of CL reaction was discussed briefly.  相似文献   

5.
In this paper, a novel electrochemiluminescence (ECL) sensor was constructed to determine herring sperm (HS) double-stranded (ds) DNA. Tetramethoxysilane and dimethyldimethoxysilane were selected as co-precursors to form an organically modified silicate (ORMOSIL) film for the immobilization of multiwall carbon nanotubes (MWNTs) wrapped by poly(p-styrenesulfonate) (PSS), and then Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) was successfully immobilized on a glassy carbon electrode via ion-association. PSS was employed to increase the conductivity of the ORMOSIL film and disperse the cut MWNTs, which were cut and shortened in a mixture of concentrated sulfuric and nitric acids, in the film. It was found that MWNTs could adsorb Ru(bpy)32+ and acted as conducting pathways to connect Ru(bpy)32+ sites to the electrode. MWNTs also played a key role as materials for the mechanical and thermal properties. The ECL performance of this modified electrode was evaluated in a flow injection analysis (FIA) system, and the detection limit (S/N = 3) for HS ds-DNA was 2.0 × 10−7 g mL−1 with a linear range from 1.34 × 10−6 to 6.67 × 10−4 g mL−1 (R2 = 0.9876). In addition, the ECL sensor presented excellent characteristics in terms of stability, reproducibility and application life.  相似文献   

6.
A novel method for determination of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in an extract from mung bean sprouts using high performance liquid chromatography (HPLC) with chemiluminescence (CL) detection is described. The method is based on the CL reaction of auxin (indole-3-acetic acid and indole-3-butyric acid) with acidic potassium permanganate (KMnO4) and tris(2,2′-bipyridyl)ruthenium(II), which was immobilized on the cationic ion-exchange resin. The chromatographic separation was performed on a Nucleosil RP-C18 column (i.d.: 250 mm × 4.6 mm, particle size: 5 μm, pore size: 100) with an isocratic mobile phase consisting of methanol-water-acetic acid (45:55:1, v/v/v). At a flow rate of 1.0 mL min−1, the total run time was 20 min. Under the optimal conditions, the linear ranges were 5.0 × 10−8 to 5.0 × 10−6 g mL−1 and 5.0 × 10−7 to 1.0 × 10−5 g mL−1 for IAA and IBA, respectively. The detection limits were 2.0 × 10−8 g mL−1 and 2.0 × 10−7 g mL−1 for IAA and IBA, respectively. The relative standard deviation (RSD) of intra-day were 3.1% and 2.3% (n = 11) for 2 × 10−6 g mL−1 IAA and 2 × 10−6 g mL−1 IBA; The relative standard deviations of inter-day precision were 6.9% and 4.9% for 2 × 10−6 g mL−1 IAA and 2 × 10−6 g mL−1 IBA. The proposed method had been successfully applied to the determination of auxin in mung bean sprouts.  相似文献   

7.
A novel chemiluminescence (CL) reaction system with bis(hydrogenperiodato) argentate(III) complex anion (Ag(III) complex, [Ag(HIO6)2]5−), for the first time, is developed for the determination of lomefloxacin (LMFX), enrofloxacin (ENLX) and pefloxacin (PFLX). The possible CL emission mechanism was discussed by comparing the fluorescence emission with CL spectra. The CL conditions of [Ag(HIO6)2]5−-H2SO4-LMFX/ENLX/PFLX systems were investigated and optimized. Under the optimized experimental conditions, the CL intensity is proportional to the concentration of the drugs in the range 0.2994-36.80 × 10−7 g mL−1 for LMFX, 4.00-30.0 × 10−7 g mL−1 for ENLX and 1.54-27.64 × 10−7 g mL−1 for PFLX. The limit of detection (s/n = 3) was 9.1 × 10−9 g mL−1 for LMFX, 3.1 × 10−9 g mL−1 for ENLX and 4.4 × 10−9 g mL−1 for PFLX. The recovery of LMFX, ENLX and PELX from the spiked pharmaceutical preparations was in the range of 92.3-105% with the RSDs of 0.5-2.7%. For urine, serum and milk samples the recoveries of the three drugs were in the range of 85.1-107% for LMFX with the RSDs of 2.3-3.4%. 80.2-112% for ENLX with the RSDs of 1.4-2.8%, and 87.8-114% for PFLX with the RSDs of 1.6-2.7%. The proposed method was applied successfully to the determination of these compounds in real samples.  相似文献   

8.
A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.  相似文献   

9.
A double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor was developed. As a proof-of-concept, a designed alkyne functionalized human IgG was used as a capture antibody and a HRP-labeled rabbit anti-goat IgG was used as signal antibody for the determination of the anti-human IgG using the sandwich model. The immunosensor was fabricated by electrochemically grafting a phenylazide on the surface of a glassy carbon electrode, and then, by coupling the alkyne functionalized human IgG with the phenylazide group through an electro-click chemistry in the presence of Cu(II). The amperometric measurement for the determination of the anti-human IgG was performed after the fabricated immunosensor was incubated with the target anti-human IgG and then with the HRP-labeled anti-goat IgG at −0.25 V in 0.10 M PBS (pH 7.0) containing 0.1 mM hydroquinone and 2.0 mM H2O2. The results showed that the increased current was linear with the logarithm of the concentration of the anti-human IgG in the range from 1.0 × 10−10 g mL−1 to 1.0 × 10−8 g mL−1 with a detection limit of 3 × 10−11 g mL−1. Furthermore, the feasibility of the double electrochemical covalent coupling method proposed in this work for fabricating the amperometric immunosensor array was explored. This work demonstrates that the double electrochemical covalent coupling method is a promising approach for the fabrication of the immunosensor and immunosensor array.  相似文献   

10.
Du J  Hao L  Li Y  Lu J 《Analytica chimica acta》2007,582(1):98-102
A simple flow injection chemiluminescence (FI-CL) method was proposed for the determination of nitrofurazone. Strong CL signal was generated during the reaction of nitrofurazone with H2O2 and N-bromosuccinimide (NBS) in alkaline condition. The CL signal was proportional to the nitrofurazone concentration in the range 1.0 × 10−7 to 1.0 × 10−5 g mL−1. The detection limit was 2 × 10−8 g mL−1 nitrofurazone and the relative standard deviation was less than 4% (6.0 × 10−6 g mL−1 nitrofurazone, n = 11). The proposed method was successfully applied to the determination of nitrofurazone in compound furacillin nasal drops, human plasma and urine samples. The CL reaction mechanism was also discussed briefly. Singlet oxygen generated in the reaction between H2O2 and NBS was suggested to be participated in the CL reaction.  相似文献   

11.
Nie F  Wang N  Zheng J  Zhang J 《Talanta》2011,84(4):1063-1067
A strong post chemiluminescence (PCL) phenomenon was observed when ammonium was injected into the reaction mixture after the finish of CL reaction of N-bromosuccinimide (NBS) and dichlorofluorescein. Based on this, a sensitive flow injection PCL method was established for the determination of ammonium. The possible CL mechanism of the reaction was proposed based on a series of experiments. The PCL intensity responded linearly to the concentration of ammonium in the range 3.0 × 10−11-1.0 × 10−7 g mL−1 with a detection limit of 1 × 10−11 g mL−1. The relative standard deviation (R.S.D.) was 1.4% for 1.0 × 10−9 g mL−1 ammonium (n = 11). This method had been applied to the determination of ammonium in samples of mineral water, tap water and river water.  相似文献   

12.
Haiping Zhou  Jinghe Yang 《Talanta》2009,78(3):809-813
It is found that Al(III) can further enhance the intensity of resonance light scattering (RLS) of the silver nanoparticles (AgNPs) and nucleic acids system. Based on this, a novel method of determination of nucleic acids is proposed in this paper. Under optimum conditions, there are linear relationships between the enhancing extent of RLS and the concentration of nucleic acids in the range of 1.0 × 10−9-1.0 × 10−7 g mL−1, 1.0 × 10−7-2.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 1.0 × 10−9-7.0 × 10−8 g mL−1 for calf thymus DNA (ctDNA) and 1.0 × 10−9-1.0 × 10−7 g mL−1 for yeast RNA (yRNA). The detection limits (S/N = 3) of fsDNA, ctDNA and yRNA are 4.1 × 10−10 g mL−1, 4.0 × 10−10 g mL−1 and 4.5 × 10−10 g mL−1, respectively. The studies indicate that the RLS enhancement effect should be ascribed to the formation of AgNPs-Al(III)-DNA aggregations through electrostatic attraction and adsorption bridging action of Al(III). And the sensitivity and stability of the AgNPs-fsDNA system could be enhanced by Al(III).  相似文献   

13.
A new, simple and highly sensitive method for spectrofluorimetric determination of amiloride (AMI) and furosemide (FUR) in pharmaceuticals is presented. The proposed method is based on the separation of AMI from FUR by solid-phase extraction using a nylon membrane, followed by spectrofluorimetric determination of both drugs, on the solid surface and the filtered aqueous solution, respectively. AMI shows low native fluorescence, but its separation-preconcentration by immobilization (solid-phase extraction) on nylon membrane surface provides a considerable enhancement in fluorescence intensity. The fluorescence determination is carried out at λex = 237, λem = 415 nm for FUR; and λex = 365, λem = 406 nm for AMI. The calibration graphs are linear in the range 3.20 × 10−4 to 0.8 μg mL−1and 1.33 × 10−3 to 4.0 μg mL−1, for AMI and FUR, respectively, with a detection limit of 9.62 × 10−5 and 4.01 × 10−4 μg mL−1 (S/N = 3). The commonly found excipients in commercial pharmaceutical formulations do not interfere. The developed method is successfully applied to the determination of both drugs in pharmaceutical formulations.  相似文献   

14.
A novel, sensitive and high selective flow-injection chemiluminescence (FI-CL) method for the determination of phenol is reported, based upon its decreasing effect on the CL reaction of luminol with hydrogen peroxide catalyzed by manganese (III) deuteroporphyrin [MnDP, Scheme 1, 3] in alkaline solution. Under the selected optimized experimental conditions, the relative CL intensity was linear with phenol in the range of 4.0 × 10−9 to 4.0 × 10−7 g mL−1. The detection limit (3σ) was 6.3 × 10−10 g mL−1 and the relative standard deviation for 1.0 × 10−7 g mL−1 phenol (n = 11) was 2.99%. The regression equation was I = 120.79 + 1.14 × 1010c (R = 0.9936). This method has been applied to the determination of phenol in water with satisfactory results.  相似文献   

15.
Liu W  Zhang Z  Liu Z 《Analytica chimica acta》2007,592(2):187-192
In this paper, a chemiluminescence (CL) micro-flow system combined with on-line solid phase extraction (SPE) is presented for determination of β-lactam antibiotics (penicillin, cefradine, cefadroxil, cefalexin) in milk. It is based on the enhancement effect of β-lactam antibiotics on the luminol-K3Fe(CN)6 CL system. The micro-flow system was fabricated from two polymethyl methacrylate (PMMA) plates (50 mm × 40 mm × 5 mm) with the microchannels of 200 μm wide and 150 μm deep. C18-modified silica gel was packed into the microchannel (length: 10 mm; width: 1 mm; depth: 500 μm) to serve as SPE device. Extraction and preconcentration of the analytes were carried out using on-line SPE micro-flow system and the selectivity of CL detection was improved. The detection limits were 0.5 μg mL−1 of penicillin, 0.04 μg mL−1 of cefradine, 0.08 μg mL−1 of cefadroxil and 0.1 μg mL−1 of cefalexin. The proposed method was also applied to analyze the β-lactam antibiotics in milk. Experimental results were in good agreement with those obtained by high performance liquid chromatography (HPLC) method with UV detection.  相似文献   

16.
Zhou M  Ma YJ  Ren XN  Zhou XY  Li L  Chen H 《Analytica chimica acta》2007,587(1):104-109
A Ru(bpy)32+-based electrochemiluminescence (ECL) detection coupled with capillary electrophoresis (CE) has been established for the determination of sinomenine for the first time. Optimum separation was achieved with a fused-silica capillary column (50 cm × 25 μm i.d.) and a background electrolyte of 50 mM sodium phosphate (pH 5.0) at a separation voltage of 15 kV. The content of sinomenine was detected by ECL at the detection voltage of 1.15 V (versus Ag/AgCl) with 5 mM Ru(bpy)32+ in 75 mM phosphate solution (pH 8.0) when a chemically modified platinum electrode by europium(III)-doped prussian blue analogue (Eu-PB) was used as a working electrode. Under the optimized conditions, the ECL intensity was in proportion to sinomenine concentration in the range from 0.01 to 1.0 μg mL−1 with a detection limit of 2.0 ng mL−1 (3σ). The relative standard derivations of migration time and ECL intensity were 0.93 and 1.11%, respectively. The level of sinomenine in Sinomenium acutum Rehd. et Wils was easily determined with recoveries between 98.6 and 102.7%.  相似文献   

17.
Chemiluminescence (CL) was observed when potassium hexacyanoferrate(III) reacted with the mixture of calcein and ketotifen. Interestingly, the CL intensity would be enhanced by trace amounts of Mg2+ and the CL intensity was strongly dependent on ketotifen concentration. Based on this phenomenon, a flow injection CL method was established for the determination of ketotifen. The possible CL mechanism is proposed based on the kinetic characteristic of the CL reaction, CL spectrum, ultraviolet (UV) spectra and fluorescent spectra. The CL intensity was correlated linearly with concentration of ketotifen over the range of 6.0 × 10−9 to 2.0 × 10−7 g mL−1 and the detection limit was 3 × 10−9 g mL−1. The relative standard deviation was 1.8% for 2.0 × 10−8 g mL−1 ketotifen (n = 11). This method was applied to the determination of ketotifen in the tablets successfully.  相似文献   

18.
A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d5 was used as an internal standard. The linear ranges were 0.01-5.0 μg mL−1 for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 μg mL−1 for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation ≧0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 μg mL−1 of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio ≧ 3) in urine was 5 ng mL−1 for MA and MDMA and 10 ng mL−1 for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.  相似文献   

19.
H. Parham  N. Rahbar 《Talanta》2009,80(2):664-7942
A new, sensitive, fast and simple method using magnetic iron oxide nanoparticles (MIONs), as an adsorbent has been developed for extraction, preconcentration and determination of traces of fluoride ions. The determination method is based on the discoloration of Fe(III)-SCN complex with extracted fluoride ions which was subsequently monitored spectrophotometrically at λmax = 458 nm. Various parameters affecting the adsorption of fluoride by the MIONs have been investigated, such as pH of the solution, type, volume and concentration of desorbing reagent, amount of adsorbent and interference effects. A linear response for the determination of fluoride was achieved in the concentration range of 0.040-1.250 μg mL−1. The limit of detection (LOD) and limit of quantification (LOQ) for fluoride based on 3 times and 10 times the standard deviation of the blank (3Sb, 10Sb) were 0.015 and 0.042 μg mL−1 (n = 20) for fluoride ion, respectively. A preconcentration factor of 50 was achieved in this method. The proposed procedure has been applied for determination of fluoride concentration in various water samples. The results obtained from this method were successfully compared with those provided by standard SPADNS method.  相似文献   

20.
In this paper the strong electrochemiluminescence (ECL) nanoparticles have been prepared based on the anionic polyelectrolyte sodium polyacrylate (PAA)-ECL enhancement for Ru(bpy)32+, which were loaded by the carrier of SiO2 nanoparticle. There were two kinds of Ru(bpy)32+ for the as-prepared nanoparticles, the doped one and the exchanged one. The former was loaded inside the ECL nanoparticles by doping, in a form of ion-pair macromolecules PAA–Ru(bpy)32+. The corresponding ECL was enhanced about 2 times owing to the doping increase of Ru(bpy)32+. The latter was loaded on the PAA-doped Nafion membrane by ion exchange. The corresponding ECL was enhanced about 3 times owing to the ion-exchanging increase of Ru(bpy)32+. At the same time, ECL intensity of the doped-inside Ru(bpy)32+ was further enhanced 13 times because polyelectrolyte PAA in the doped membrane could obviously enhance electron transfer between the doped Ru(bpy)32+ and the working electrode. Furthermore, based on hydrophobic regions of the doped membrane antibody labeling could be easily realized by the as-prepared nanoparticles and then a high sensitive ECL immunoassay for HBsAg was developed. The linear range was between 1.0 and 100 pg mL−1 (R2 = 0.9912). The detection limit could be as low as 0.11 pg mL−1 (signal-to-noise ratio = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号