首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel approach to multivariate evaluation of separation electrolytes for micellar electrokinetic chromatography is presented. An initial screening of the experimental parameters is performed using a Plackett-Burman design. Significant parameters are further evaluated using full factorial designs. The total resolution of the separation is calculated and used as response. The proposed scheme has been applied to the optimisation of the separation of phenols and the chiral separation of (+)-1-(9-anthryl)-2-propyl chloroformate-derivatized amino acids. A total of eight experimental parameters were evaluated and optimal conditions found in less than 48 experiments.  相似文献   

2.
Huang HY  Chiu CW  Chen YC  Yeh JM 《Electrophoresis》2005,26(4-5):895-902
Microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatograpy (MEKC) were compared for their abilities to separate and detect ten similar benzophenones, which are commonly used as UV filters in various plastic and cosmetic products. Sodium dodecyl sulfate (SDS) concentration and column temperature rarely affected separation resolution for MEEKC, but separation of benzophenones could be improved by changing the SDS concentration and column temperature for MEKC. Buffer pH and ethanol (organic modifier) were found to markedly influence the separation selectivity for both MEEKC and MEKC systems. In addition, a higher electric voltage improved the separation efficiency without a noticeable reduction in separation resolution for MEEKC, whereas it caused a poor separation resolution for the MEKC system.  相似文献   

3.
A capillary electrophoretic (CE) method was developed for the separation of diastereoisomers of a new human immunodeficiency virus (HIV) protease inhibitor TMC114. In total 16 isomers of this drug have been synthesized (eight pairs of enantiomers). We succeeded in the separation of the eight diastereoisomers, but no enantiomers could be separated. Because of the high similarity and water-insolubility of these isomers, the separation is a real challenge. Different CE modes were tried out: capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), micellar electrokinetic capillary chromatography (MEKC), and microemulsion electrokinetic capillary chromatography (MEEKC). Only MEEKC offered resolution of these compounds.  相似文献   

4.
This review surveys the enantiomeric separation of drugs by electrokinetic chromatography using polymeric chiral surfactant pseudostationary phases. These phases have recently been shown to provide better mass transfer and increased rigidity and stability than regular micelles in micellar capillary electrophoresis. Characterization of the polymeric chiral surfactants is presented. Solution interactions of the pseudostationary phases via thermodynamics and fluorescence probe studies are evaluated. Also, case studies of enantiomeric separation of drugs using a single amino acid surfactant and the synergistic effect of the addition of gamma-cyclodextrin to the buffer is discussed. The use of dipeptide surfactants for chiral drug separations is described as well.  相似文献   

5.
Several authors have recently reported the use of micelle polymers, polymer surfactants and dendrimers as pseudo-stationary phases in electrokinetic chromatography. These reports have demonstrated the effectiveness of these phases for a variety of applications, including the separation and analysis of hydrophobic compounds and chiral compounds and the application of mass spectrometric detection. This review covers developments in this area since the first introduction of polymeric pseudo-stationary phases in 1992. The use of polymeric micelles in electrokinetic chromatography is compared briefly with capillary electrochromatography. Some thoughts on future directions in this area are presented.  相似文献   

6.
The optimization of the separation resolution for a group of N-phenylpyrazole derivatives in micellar electrokinetic chromatography (MEKC) as a function of the separation buffer composition (surfactant and organic modifier concentration) has been performed. In order to achieve our purpose, the first step has been the prediction of the migration times of the electroosmotic flow (t(0)) and micelles (t(m)), and the retention factors of solutes (k), as a function of surfactant (sodium dodecyl sulfate) and alcohol (n-propanol or n-butanol) concentrations, by means of empirical equations. Also, some physicochemical models have been applied to relate the retention factors to the surfactant and the organic modifier concentrations in order to optimize the separation resolution and to increase our knowledge of the separation process. Finally, a comparison of the resolution optimization through the use of the physicochemical and empirical models selected has been made in order to obtain the optimum separation buffer composition for the separation of a group of 17 N-phenylpyrazole derivatives as test solutes.  相似文献   

7.
Microcystins, which have their origin in species of cyanobacteria present in freshwaters, have recently been found to be important contaminants of the aquatic environment at trace levels. HPLC and HPCE with UV detection have been applied in the determination of such toxic compounds. Immunoaffinity chromatography for the selective extraction and clean-up of microcystins has been successfully applied to different matrices. Simple protocols for unambiguous determination of these toxins are presented and the immunoaffinity clean-up is compared with conventionally used solid phase extraction procedures. The development and optimisation of an on-line preconcentration procedure based on field amplified sample stacking for the analysis of microcystins by HPCE in the micellar electrokinetic chromatography mode is also described, using borate buffer with the anionic surfactant SDS, as separation electrolyte. Results indicate that sub-nanogram/gram content of microcystins can be detected in water samples, while sub-microgram/gram concentrations can be determined in algae samples.  相似文献   

8.
Liu BF  Zhang JF  Lu YT 《Electrophoresis》2002,23(9):1279-1284
Computer-aided optimization of micellar electrokinetic capillary chromatography (MEKC) separations was demonstrated by artificial neural networks (ANNs) using a Levenberg-Marquardt algorithm and an orthogonal experimental design. A novel criterion, named Q, for evaluating the separation quality of MEKC was firstly presented, which considered both separation selectivity and analysis time. MEKC separation conditions of seven plant hormones were then simulated and optimized using ANNs based on this novel criterion. The result was further compared to that obtained using ANNs based on a traditionally used criterion of overall normalization resolution (named r). Finally, the separation under optimum conditions predicted by ANNs using the criterion Q was compared to, and proved to be better than that obtained by empirical step-by-step optimization procedures. This method may also be adapted to other separation methods due to its generality.  相似文献   

9.
The electrophoretic behaviour of ionizable and neutral alkylxanthines commonly used in pharmaceutical preparations was studied. The performance of various separation modes including capillary zone electrophoresis (CZE), cyclodextrin electrokinetic chromatography, and micellar electrokinetic chromatography (MEKC) with either sodium dodecyl sulfate (SDS) or bile salts as surfactants, was assessed. CZE in an alkaline medium successfully separates ionizable xanthines and dyphylline. The addition of carboxymethyl-β-cyclodextrin to the background electrolyte allows only partial resolution of neutral xanthines. Based on MEKC results, bile salts exhibit more discrimination ability than SDS to separate similar xanthines. The best results are provided by taurodeoxycholic acid, which ensures baseline separation of xanthines.  相似文献   

10.
The work presented here explores the possibilities of the electrokinetic injection (EK) to achieve sensitive methods for the determination of tricyclic antidepressants in biological samples (serum). The addition of ACN to the sample, with high content in salts, causes stacking at the tip of the capillary, in a similar way as for hydrodynamic injection. An experimental design with the response surface methodology has been used to find the optimum composition of the matrix of the sample (sodium chloride and ACN percentages) and the conditions for the EK (water-plug length, time, and voltage of injection) in few experiments. The composition of the separation buffer was the same as utilized in a previous paper. The use of a bubble capillary to reach lower detection limits implies a loss of the resolution and requires a new optimization. Finally, a comparison between electrokinetic and hydrodynamic injections is made.  相似文献   

11.
We studied the use of micellar electrokinetic capillary chromatography for separating eight penicillins. The method consists of (i) an electrophoretic separation based on micellar electrokinetic capillary chromatography, which uses sodium dodecyl sulfate (SDS) as surfactant; (ii) a sample stacking technique called reverse electrode polarity stacking mode (REPSM); and (iii) direct UV detection. The background electrolyte that gave complete separation contained 20 mM sodium borate buffer and 60 mM SDS. The sensitivity of the method was improved by an enrichment step that used on-column stacking. The limits of detection were at the microg.L(-1) level for the penicillins and did not detract from the peak resolution.  相似文献   

12.
A method of on-line chemiluminescence detection with capillary electrophoresis for biogenic amines (diaminopropane, putrescine, cadaverine and diaminohexane) labeled with N-(4-aminobutyl)-N-ethylisoluminol is reported for the first time. Two separation modes, capillary zone electrophoresis and micellar electrokinetic chromatography (MEKC), were studied. The results show that excellent resolution was achieved in MEKC. Parameters affecting separation process and chemiluminescence detection have been examined in detail. Under the optimum conditions, the baseline separation of four amines was obtained within 7.5 min. The detection limits (S/N=3) of diaminopropane, putrescine, cadaverine and diaminohexane are 3.5 x 10(-8), 3.5 x 10(-8), 3.9 x 10(-8) and 1.2 x 10(-7) M, respectively. The method was applied to the analysis of biogenic amines in lake water.  相似文献   

13.
Studies have been performed to evaluate whether an on-line partial filling-micellar electrokinetic chromatography (PF-MEKC) system could be applied to a recently developed MEKC method for the separation of ibuprofen, codeine and one of the degradation products. Attempts to couple the PF-MEKC system to MS have also been performed. SDS concentration, micellar zone length and concentration of acetonitrile in the buffer were optimized using factorial design. When a small micelle zone was injected directly after the sample introduction, the results improved markedly. The MS parameters have not been optimized, but the studies show promising results for the use of PF-MEKC-mass spectrometry for identification of the degradation products.  相似文献   

14.
Capillary electrokinetic separation techniques offer high efficiency and peak capacity, and can be very useful for the analysis of samples containing a large variety of (unknown) compounds. Such samples are frequently met in impurity profiling of drugs (detection of potential impurities in a pharmaceutical substance or product) and in general sample profiling (determination of differences or similarities between samples). In this paper, the potential, merits, and limitations of electrokinetic separation techniques for profiling purposes are evaluated using examples from literature. A distinction is made between impurity profiling, forensic profiling and profiling of natural products, and the application of capillary zone electrophoresis, micellar electrokinetic chromatography, and capillary electrochromatography in these fields is discussed. Attention is devoted to important aspects such as selectivity, resolution enhancement, applicability, detection, and compound confirmation and quantification. The specific properties of the various electrokinetic techniques are discussed and compared with more conventional techniques as liquid chromatography.  相似文献   

15.
A chemometric experimental design has been applied for the optimization of neurotransmitter amino acid separation in capillary electrophoresis. The optimizations were carried out for normal micellar electrokinetic chromatography (N-MEKC) and reversed migration micellar electrokinetic chromatography (RM-MEKC). In order to optimize three separation factors and study the interaction between factors, a response function was optimized via searching its optimum (minimum/maximum). For this purpose a central composite design with multivariate linear regression (MLR) analysis was utilized. Modeling with good regression coefficients from the MLR adequately described the interaction of factors such as background electrolyte and sodium dodecylsulfate concentrations which had a large impact on selectivity and migration behaviors. Similar optimal conditions regarding resolution and number of theoretical plates but different retention behaviors as a function of background electrolyte and micellar concentrations were observed for N-MEKC and RM-MEKC. Improved overall performance from the RM-MEKC separation of five neurotransmitter acids, superior to N-MEKC, is demonstrated in terms of repeatability, peak symmetry, sensitivity, and in particular, impurity determination in an overloaded separation system.  相似文献   

16.
Micellar electrokinetic chromatography of proteins   总被引:1,自引:0,他引:1  
Micellar electrokinetic capillary chromatography (MECC) of proteins is a high resolution capillary electrophoretic (CE) analysis method that utilizes the hydrophobic and electrostatic interaction of protein analytes with surfactant micelles present in the buffer medium to facilitate separation. Through the manipulation of the protein-micelle interaction by the adjustment of variables such as surfactant concentration, solution pH, ionic strength, the presence of an organic modifier and the use of coated capillaries, MECC analyses of a wide variety of proteins have been optimized. MECC has been demonstrated to provide resolution of mixtures consisting of proteins with minor structural variations and also has provided the successful quantitative analysis of protein present in complex matrices. The adoption of protein MECC as a routine analytical technique may be dependent upon the successful interface of MECC with detection methodology, such as mass spectrometry, which can provide analyte characterization information.  相似文献   

17.
Das S  Chakraborty S 《Electrophoresis》2008,29(5):1115-1124
In this paper, a detailed continuum-based theoretical model is proposed to investigate the effects of near-wall potentials and hydrodynamic confinement on separation of charged macromolecules in channels of nanoscale dimensions. These wall effects are primarily confined within a few nanometers from the channel wall, and hence have negligible influences in the conventional electrokinetic separation methods that are routinely performed in microchannels. However, in nanochannels, their zone of influence becomes significant in comparison to the channel height, thereby inducing certain nontrivial effects on the resultant separation characteristics. By executing a regular perturbation analysis, it is established that depending on the macromolecular size relative to the channel height and the extent of electrical double layer (EDL) interactions, the wall forces decide the speed of traverse and the extent of spreading (dispersion) of the macromolecular bands. These factors combine together to finally decide the separation characteristics (quantified by the resolution of separation) of the charged macromolecules in nanochannels. It is demonstrated that because of the near-wall effects, macromolecular pairs with less disparities in sizes give rise to higher values of resolution. Moreover, the wall-induced influences are shown to magnify the resolution for any given pair of macromolecules in the nanofluidic systems, thereby signifying greater separation efficiency.  相似文献   

18.
This review gives a survey of selectivity modes in capillary electrophoresis separations in pharmaceutical analysis and bioanalysis. Despite the high efficiencies of these separation techniques, good selectivity is required to allow quantitation or identification of a particular analyte. Selectivity in capillary electrophoresis is defined and described for different separation mechanisms, which are divided into two major areas: (i) capillary zone electrophoresis and (ii) electrokinetic chromatography. The first area describes aqueous (with or without organic modifiers) and nonaqueous modes. The second area discusses all capillary electrophoretic separation modes in which interaction with a (pseudo)stationary phase results in a change in migration rate of the analytes. These can be divided in micellar electrokinetic chromatography and capillary electrochromatography. The latter category can range from fully packed capillaries, via open-tubular coated capillaries to the addition of microparticles with multiple or single binding sites. Furthermore, an attempt is made to differentiate between methods in which molecular recognition plays a predominant role and methods in which the selectivity depends on overall differences in physicochemical properties between the analytes. The calculation of the resolution for the different separation modes and the requirements for qualitative and quantitative analysis are discussed. It is anticipated that selectivity tuning is easier in separation modes in which molecular recognition plays a role. However, sufficient attention needs to be paid to the efficiency of the system in that it not only affects resolution but also detectability of the analyte of interest.  相似文献   

19.
In this study, microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) were compared for their abilities to separate and detect thirteen phenolic compounds (syringic acid, p-coumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), and two other ingredients (caffeine and theophylline) in teas and grapes. Separation of phenolic compounds was improved by changing the SDS concentration for MEEKC, but the SDS concentration rarely affected the resolution for MEKC. Organic modifier (acetonitrile or methanol) was found to markedly influence the resolution and selectivity for both MEEKC and MEKC systems. In addition, a higher voltage and a higher column temperature improved the separation efficiency without any noticeable reduction in resolution for MEEKC whereas they caused a poor resolution for the MEKC system. Although separations with baseline resolution were achieved by the optimized MEEKC and MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC.  相似文献   

20.
Luong JH  Male KB  Mazza A  Masson L  Brousseau R 《Electrophoresis》2004,25(18-19):3292-3299
Bacillus thuringiensis and recombinant Escherichia coli proteinaceous protoxins were subject to proteolysis and analyzed by capillary electrokinetic chromatography. Three resulting toxins (65 kDa) were baseline-resolved within 22 min using a 10 mM borate, pH 11 separation buffer consisting of 25 mM sodium dodecyl sulfate (SDS) and 30 mM phytic acid. The toxins displayed differential interactions with the SDS and phytic acid phases to effect their separation. The ion-pairing interaction between the analyte and phytic acid was also useful in preventing adsorption to the capillary walls and thus enhanced separation resolution and efficiency. The use of electrokinetic chromatography allows achievement of the separation in a significantly shorter time than conventional high-performance liquid chromatography (HPLC) using a diethylaminoethyl (DEAE) weak-anion exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号