首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two methods, based on the use of capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC), respectively, were developed for the analysis of the atypical antipsychotic aripiprazole in plasma of schizophrenic patients for therapeutic drug monitoring purposes. Good analytical performances were obtained with the CE method, using uncoated fused silica capillaries and a background electrolyte composed of 50 mM phosphate buffer at pH 2.5. With 20 kV voltage, aripiprazole was detectable at 214 nm within 5 min. The second analytical method, based on HPLC with diode array detection, employed a C8 reversed-phase column and a mixture of a 12.5 mM phosphate buffer, pH 3.5, containing triethylamine and acetonitrile as the mobile phase. Aripiprazole was detected at 254 nm and a complete chromatographic run lasted about 10 min. For both analytical methods loxapine was used as the internal standard and the same plasma sample pre-treatment by means of solid-phase extraction on cyano cartridges was carried out, with extraction yield values always higher than 91.3%. Linear responses for aripiprazole were obtained between 70 and 700 ng mL−1 and precision assays (expressed as relative standard deviation values) were lower than 7.0%. After validation, both methods were successfully applied to human plasma samples drawn from schizophrenic patients undergoing therapy with Abilify® tablets. Accuracy was satisfactory, with recovery value higher than 91.0%.  相似文献   

2.
Summary A sensitive and selective high-performance liquid chromatographic method has been developed for monitoring clozapine levels in human plasma. Chromatography was performed on a reversed-phase column (C8, 150 mm×4.6 mm i.d., 5 μm) with acetonitrile-aqueous sodium acetate solution, 88∶12 (v/v), as mobile phase; the flow rate was 1 mL min−1. Clozapine oxidation at +800 mV was detected amperometrically. Response was linearly dependent on concentration over the range 50–1500 ng mL−1 clozapine in plasma. Sample preparation by solid-phase extraction before HPLC analysis gave high extraction yield (94%). The accuracy and precision of the method were both very good (recovery: 97%;RSD<3.3%).  相似文献   

3.
A graphene oxide-based aerogel was synthesized and applied to the extraction and the determinations with the high-performance liquid chromatography-ultraviolet detector. After the characterization of the produced graphene-aerogel, it was utilized as a dispersive solid-phase extraction sorbent for risperidone extraction from plasma samples. Aerogels are materials with a large surface area-to-mass ratio and plenty of core with functional groups which can easily attach to the analytes to extract them to the second phase. The suggested method determined risperidone in plasma samples in the wide dynamic range from 20 ng/ml to 3 μg/ml. The limits of detection and quantification of the developed method were calculated as 2.4 and 8.2 ng/ml, respectively. As a novel feature, the developed method has no need to precipitate plasma proteins, improving the analytical performance of the analysis. Also, for the first time, the produced materials were utilized for the extraction of risperidone from the plasma samples. The obtained results revealed that the developed approach could be employed as an accurate method for the quantification of risperidone in real plasma samples.  相似文献   

4.
A precise and accurate high‐performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid‐phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra‐ and inter‐day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP8 column using a mixture of 0.05 m acetate buffer pH 5.7–acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7‐dimethyl‐2,3‐di(2‐pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin.  相似文献   

5.
6.
A sensitive and selective method was developed for the determination of the antipsychotic drug Olanzapine levels in rat brain tissue, based on HPLC with electrochemical detection. The analyses were carried out on a C8 reversed phase column (150 mm x 4.6 mm, 5 microm), using a mobile phase composed of methanol and a phosphate buffer (44.0 mM, pH 3.5), containing triethylamine (21:79, v/v), flowing at 1.2 mL min(-1). A high sensitivity coulometric detection analytical cell containing two flow-through low volume working electrodes was used: electrode 1 was set at +0.350 V and electrode 2 at -0.200 V. Olanzapine, administered to rats in different doses or in different times, was extracted from tissue homogenate of either the whole brain or specific areas (cortex, hyppocampus, nucleus striatum) with a rapid solid phase extraction procedure (SPE) on Oasis HLB cartridges. The method provided a high extraction yield of Olanzapine and internal standard (2-methylolanzapine) from brain tissue homogenate with absolute recovery values higher than 90.0%. The detector response was linear over a concentration range of 0.2-100.0 ng mL(-1) of Olanzapine. The limit of quantification (LOQ) was 0.2 ng mL(-1). Precision results, expressed by the intra-day and the inter-day relative standard deviation values, were satisfactory, better than 4.6%. Accuracy was satisfactory as well. This method proved to be suitable for the analysis of Olanzapine in rat brain tissues and for the study of distribution and pharmacokinetics of Olanzapine in rat brain after a single treatment with the antipsychotic drug.  相似文献   

7.
8.
Meropenem is a β ‐lactam broad‐spectrum antibiotic and belongs to the subgroup of carbapenems. It is primarily used in intensive care units for intravenous treatment of severe infections. To avoid bacterial resistance or toxic side effects, the determination of serum meropenem concentration is highly advisable. A simple and fast method for the quantitative determination of meropenem in human serum using high‐performance liquid chromatography with ultraviolet detection (HPLC/UV) was developed and validated. Meropenem was determined by an isocratic HPLC using a tris(hydroxymethyl)aminomethane buffer (pH 8.5; 15% methanol) as a mobile phase and UV detection at 300 nm, with a flow rate of 1.0 mL/min and an analysis time of 10 min. Chromatographic separation was performed on a Kinetex C18 column (5 μm, 150 × 4.6 mm). In order to remove undesired serum components, solid‐phase extraction was used for sample preparation. Since meropenem is not stable in solution, sample and stock solution were stored at −80°C. After preparation, samples were stable at room temperature for at least 6 h. The calibration curve was linear from 3.5 to 200 mg/L with a correlation coefficient r 2 of 0.999. The method is accurate with an intra‐ and inter‐assay precision <18.5%.  相似文献   

9.
10.
A high-performance liquid chromatography (HPLC) assay was developed for the determination of estazolam in human plasma. Estazolam and alprazolam as an internal standard were detected by ultraviolet absorbance at 240 nm. Estazolam in plasma was extracted by a rapid and simple procedure based on cyanopropyl bonded-phase extraction. Chromatographic separation was achieved with a reversed-phase C8-5 column using a mobile phase of 0.5% potassium dihydrogenphosphate(pH 4.5)-acetonitrile (70:30, v/v). The determination of estazolam was possible in the concentration range of 1.0 - 200.0 ng/mL. The mean recovery of estazolam added to plasma was 96.1 +/- 1.5% with coefficients of variation of less than 5.5%. This method is applicable for accurately monitoring the plasma level of estazolam in healthy subjects participating in scientific research.  相似文献   

11.
A simple and reliable reversed-phase high-performance liquid chromatographic method with coulometric detection is described for the quantitation of naltrexone and its metabolite, 6 beta-naltrexol, in plasma samples of healthy volunteers who received orally 50 mg of naltrexone. The analytes and the internal standard, naloxone, are extracted with an octadecyl solid-phase extraction column before chromatography. The mobile phase is 0.01 M potassium phosphate (pH 3)-acetonitrile (85:15, v/v) and it is pumped at 0.8 ml/min. The coulometric detector is formed by two electrodes set at +0.20 V and +0.70 V, with a palladium reference electrode. The limit of quantitation observed was 5 ng/ml for both naltrexone and 6 beta-naltrexol. This method can be used to investigate pharmacokinetic parameters of different pharmaceutical preparations of this opioid antagonist.  相似文献   

12.
Seven phenothiazine derivatives, perazine, perphenazine, prochlorperazine, propericiazine, thioproperazine, trifluoperazine, and flupentixol, have been found to be extractable from human plasma and urine samples using disk solid-phase extraction (SPE) with an Empore C18 cartridge. Human plasma and urine (1 mL each) containing the 7 phenothiazine derivatives were mixed with 2 mL of 0.1M NaOH and 7 mL distilled water and then poured into the disk SPE cartridges. The drugs were eluted with 1 mL chloroform- acetonitrile (8 + 2) and determined by liquid chromatography with ammonium formate/formic acid-acetonitrile gradient elution. The detection was performed by ultraviolet absorption at 250 nm. The separation of the 7 phenothiazine derivatives from each other and from impurities was generally satisfactory using a SymmetryShield RP8 column (150 x 2.1 mm id, 3.5 microm particle size). The recoveries of the 7 phenothiazine derivatives spiked into plasma and urine samples were 64.0-89.9% and 65.1-92.1%, respectively. Regression equations for the 7 phenothiazine derivatives showed excellent linearity, with detection limits of 0.021-0.30 microg/mL for plasma and 0.017-0.30 microg/mL for urine. The within-day and day-to-day coefficients of variation for both samples were commonly below 9.0 and 14.9%, respectively.  相似文献   

13.
固相萃取-高效液相色谱电化学法检测大鼠血浆儿茶酚胺   总被引:2,自引:3,他引:2  
建立了一种Oasis HLB固相萃取-高效液相色谱(HPLC)电化学检测大鼠血浆儿茶酚胺(CAs)的方法。血浆样本在形成二苯基硼酸-儿荼酚胺复合物后经优化的固相提取技术,得到较高样本回收率。以Atlantis C18色谱柱为固定相,确定了各种影响色谱的参数,如流动相组成、pH范围及检测器的设定。儿茶酚胺所有组分肾上腺素(E)、去甲肾上腺素(NE)和多巴胺(DA)的平均提取回收率在90%~95%之间。E、NE和DA的质量浓度在0.25~30ng/mL时与峰面积呈良好的线性关系(r值分别为0.9989,0.9992和0.9984);检出限为0.4pg。该法灵敏、准确、重现性好、结果可靠。  相似文献   

14.
A precise and feasible HPLC method has been developed for the analysis of amphetamine (AMPH), methamphetamine (MAMPH) and methylenedioxymethamphetamine (MDMA, ecstasy) in human urine. A chromatographic run on a C8 Genesis (150 mm x 4.6 mm, 5 microm) column maintained at 30 degrees C lasts about 17 min, using a mobile phase composed of ACN (12%) and a pH 2.5 phosphate buffer (88%) containing 0.3% triethylamine. Mirtazapine was used as the internal standard. Good linearity was found in the 100-2000 ng/mL concentration range for AMPH and MAMPH and in the 12-2000 ng/mL concentration range for MDMA. The pretreatment of urine samples was carried out by means of a careful SPE procedure on C2 cartridges. The extraction yields were very satisfactory for all analytes, with average values greater than 97%. The leading conditions allowed the determination of AMPH, MAMPH and MDMA with satisfactory precision and accuracy. The method has been successfully applied to the determination of the analytes in urine of AMPH users.  相似文献   

15.
A high-performance liquid chromatographic (HPLC) method with fluorescence detection for the quantification of vancomycin in human plasma was developed and validated. The method includes an extraction of vancomycin by deproteinization with acetonitrile. The analyses were carried out at 258 nm as the emission wavelength while exciting at 225 nm on a reversed-phase column (30 cm × 4 mm i.d. × 10 μm Waters Associates μBondapak C18) using a mobile phase composed of methanol and phosphate buffer at pH 6.3. Vancomycin was quantitatively recovered from human plasma samples (>96%) with high values of precision. The separation was completed within 27 min. The calibration curve was linear over the range from 5 to 1,000 ng/mL with the detection and quantification limits of 2 ng/mL and 5 ng/mL, respectively. This method is suitable for the routine assay of plasma samples. Figure The effect of the deproteinization solvent on the signal of the interference peak at retention time of 15.0 min. The peak which interferes with the peaks of Erythromycin and Vancomycin has been disappeared by using 2 mL acetonitrile as the deproteinization solvent.  相似文献   

16.
A method for the determination of nanogram amounts of delta 9-tetrahydrocannabinol (THC) in plasma and serum is described. THC was quantitatively isolated by solid-phase extraction after addition of an aqueous solution of urea and methanol to the sample. The extracts were analysed by high-performance liquid chromatography with electrochemical detection in the oxidizing mode. The detection limit of THC is ca. 100 pg for a signal-to-noise ratio of 3. With this method, levels of 2 ng/ml of THC in plasma can be measured.  相似文献   

17.
A method is reported for the determination, in water samples, of 10 quinolones which are used as veterinary drugs. Analytes are isolated from samples by solid-phase extraction (SPE) and analysed by reversed-phase high-performance liquid chromatography using fluorimetric detection. A solid-phase extraction procedure based on retention on HBL OASIS cartridges and elution with a mixture of acetonitrile-water in basic medium is suitable for pre-concentration of the analytes. Pre-concentration factors up to 250 can be obtained. The quinolones are separated with an octyl silica-based column and mobile phases consisting of aqueous oxalic acid solutions and acetonitrile mixtures. The attained detection limits of the whole process are in the ng l(-1) level when 250 ml of water sample is processed. Recovery rates, from natural water samples spiked at 2060 ng l(-1) level, range from 70 to 100% and common standard deviation are about 6-12%.  相似文献   

18.
19.
Levetiracetam is an antiepileptic drug for the treatment of psychiatric patients. In this study, a selective, straightforward, and rapid online heart‐cutting liquid chromatography method was developed for the therapeutic drug monitoring of levetiracetam. This method allows for the determination of levetiracetam in human plasma without complex sample preparation. The mobile phases consisted of 30 mM aq. orthophosphoric acid solution/methanol (70:30) at a flow rate of 1 mL/min for the first system and 10 mM aq. orthophosphoric acid solution/methanol (55:45) at a flow rate of 1 mL/min for the second system. The first separation was carried out on a GL Sciences Intersil ODS‐3 column (4.6 mm × 150 mm, 3 µm) and the second separation was carried out on a Restek Ultra PFPP column (4.6 mm × 150 mm, 5 µm). The detection was carried out at 205 nm for both systems. The method was validated for selectivity and linearity, which were in the 6–60 µg/mL range. Intra‐ and interassay accuracies were <112.6%, and the intra‐ and interassay precisions were <6.4% for all quality control samples. The lower limit of quantitation was 6 µg/mL. The developed method was successfully applied for therapeutic drug monitoring of plasma samples from patients.  相似文献   

20.
A method was developed for the determination of tylosin in feeds. The method involves extraction of tylosin with methanol, concentration under a stream of nitrogen, and cleanup using Phenomenex C18 solid-phase extraction cartridge. Analyte separation and quantitation were achieved by gradient reversed-phase liquid chromatography and UV absorbance at 285 nm with a reference wavelength of 320 nm with column temperature of 45 degrees C. Average spike recoveries for samples prepared at 4 spiking levels (22.7, 181, 907, and 1000 g/ton) were 111.0, 94.9, 96.2, and 98.6%, respectively. The overall method precision at each of the 4 spiking levels was < or = 7.85% relative standard deviation. The limits of detection and quantitation (g/ton) were 2.16 and 7.20 g/ton, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号