首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multi-residue trace-level determination of six pesticides (diazinon, dimethoate, chlorpyrifos, vinclozolin, fenthion and quinalphos) in wine samples, after their single-drop microextraction (SDME) is presented herein. The extraction procedure was optimized using the multivariate optimization approach following a two-stage process. The first screening experimental design brought out the significant parameters and was followed by a central composite design (CCD) experiment, which revealed the simultaneous effect of the significant factors affecting the SDME process. High level of linearity for all target analytes was recorded with r2 ranging between 0.9978 and 0.9999 while repeatability (intra-day) and reproducibility (inter-day) varied from 5.6% to 7.4% and 4.9% to 12.5%, respectively. Limits of detection (LODs) and limits of quantification (LOQs) were found to range in the low μg L−1 level. In general, the developed methodology presented simplicity and enhanced sensitivity, rendering it appropriate for routine wine screening purposes.  相似文献   

2.
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 μL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 °C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 μL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n = 8), and the detection limits were in the range of 1-25 ng L−1. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.  相似文献   

3.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detector (GC-FID) was developed for preconcentration and determination of some nitroaromatic compounds in wastewater samples. The effects of different variables on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the DLLME process were extraction and disperser solvent volumes, salt effect, sample volume, extraction temperature and extraction time. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were derived. The optimum experimental conditions found from this statistical evaluation included: sample volume, 9 mL; extraction solvent (CCl4) volume, 20 μL; disperser solvent (methanol) volume, 0.75 mL; sodium chloride concentration, 3% (w/v); extraction temperature, 20 °C and extraction time, 2 min. Under the optimum conditions, the preconcentration factors were between 202 and 314. Limit of detections (LODs) ranged from 0.09 μg L−1 (for 2-nitrotoluene) to 0.5 μg L−1 (for 2,4-dinitrotoluene). Linear dynamic ranges (LDRs) of 0.5-300 and 1-400 μg L−1 were obtained for mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs), respectively. Performance of the present method was evaluated for extraction and determination of nitroaromatic compounds in wastewater samples in the range of microgram per liter and satisfactory results were obtained (RSDs < 10.1%).  相似文献   

4.
A simple and fast method of low-density solvent based dispersive liquid-liquid microextraction (LDS-DLLME) followed by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed for the speciation analysis of organoarsenic and inorganic arsenic in water samples. The low-density solvent (octanol) was given as the organic phase and injected into the aqueous sample (donor phase) with methanol as the disperser. With As (V), As (III), p-APAA, 4-HPAA, ROX and PAA as target species, factors of LDS-DLLME including pH value, anionic carriers, elution conditions and extractant, were studied in detail. Besides, volumes of solvents were further optimised by response surface methodology. Under the optimal conditions, the limits of detection for four phenylarsenics and arsenate were in the range of 0.001–0.039 μg L?1. The relative standard deviations (RSDs) were 3.6–9.4% and the enrichment factors varied from 6.2 to 70.8. The proposed method of LDS-DLLME-HPLC-ICP-MS was satisfactorily applied to the determination of six arsenic compounds in water samples with recoveries of 81.8–111.7% for the spiked lake water samples.  相似文献   

5.
In this work, a simple, rapid and sensitive sample pretreatment technique, dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD), has been developed to determine carbamate (carbaryl) and organophosphorus (triazophos) pesticide residues in water and fruit juice samples. Parameters, affecting the DLLME performance such as the kind and volume of extraction and dispersive solvents, extraction time and salt concentration, were studied and optimized. Under the optimum extraction conditions (extraction solvent: tetrachloroethane, 15.0 μL; dispersive solvent: acetonitrile, 1.0 mL; no addition of salt and extraction time below 5 s), the performance of the proposed method was evaluated. The enrichment factors for the carbaryl and triazophos were 87.3 and 275.6, respectively. The linearity was obtained in the concentration range of 0.1-1000 ng mL−1 with correlation coefficients from 0.9991 to 0.9999. The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 12.3 to 16.0 pg mL−1. The relative standard deviations (RSDs, for 10 ng mL−1 of carbaryl and 20 ng mL−1 of triazophos) varied from 1.38% to 2.74% (n = 6). The environmental water (at the fortified level of 1.0 ng mL−1) and fruit juice samples (at the fortified level of 1.0 and 5.0 ng mL−1) were successfully analyzed by the proposed method, and the relative recoveries of them were in the range of 80.4-114.2%, 89.8-117.9% and 86.3-105.3%, respectively.  相似文献   

6.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

7.
A novel method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. A mixture of extraction solvent (41 μL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) were rapidly injected into 5.0 mL aqueous sample for the formation of cloudy solution, the analytes in the sample were extracted into the fine droplets of CCl4. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 5 to 5000 ng mL−1 for target analytes. The enrichment factors for DMP, DEP and DnBP were 45, 92 and 196, respectively, and the limits of detection were 1.8, 0.88 and 0.64 ng mL−1, respectively. The relative standard deviations (R.S.D.) for the extraction of 10 ng mL−1 of phthalate esters were in the range of 4.3-5.9% (n = 7). Lake water, tap water and bottled mineral water samples were successfully analyzed using the proposed method.  相似文献   

8.
Sereshti H  Khojeh V  Samadi S 《Talanta》2011,83(3):885-890
In this study, dispersive liquid-liquid microextraction (DLLME) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed for simultaneous preconcentration and trace determination of chromium, copper, nickel and zinc in water samples. Sodium diethyldithiocarbamate (Na-DDTC), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. The effective parameters of DLLME such as volume of extraction and disperser solvents, pH, concentration of salt and concentration of the chelating agent were studied by a (2f−1) fractional factorial design to identify the most important parameters and their interactions. The results showed that concentration of salt and volume of disperser solvent had no effect on the extraction efficiency. In the next step, central composite design was used to obtain optimum levels of effective parameters. The optimal conditions were: volume of extraction solvent, 113 μL; concentration of the chelating agent, 540 mg L−1; and pH, 6.70. The linear dynamic range for Cu, Ni and Zn was 1-1000 μg L−1 and for Cr was 1-750 μg L−1. The correlation coefficient (R2) was higher than 0.993. The limits of detection were 0.23-0.55 μg L−1. The relative standard deviations (RSDs, C = 200 μg L−1, n = 7) were in the range of 2.1-3.8%. The method was successfully applied to determination of Cr, Cu, Ni and Zn in the real water samples and satisfactory relative recoveries (90-99%) were achieved.  相似文献   

9.
Since its innovation in 2006, the dispersive liquid-liquid microextraction (DLLME) method has attracted the attention of analytical chemists in the field of sample preparation. This method has been successfully applied to determine trace amounts of pollutants in various matrices, but the restriction in the choice of suitable disperser and extraction solvents, and high disperser solvent consumption leading to decreased partition coefficients of the analytes between aqueous phase and extractant are its problems. To solve these drawbacks and develop environmentally friendly techniques, various alternatives for the conventional DLLME have been presented. The current review will begin with an introduction to the sample preparation, implementation of DLLME, and its advantages. Then, we focus on its drawbacks, which result mainly from the use of disperser solvent. Afterward, some of the most interesting approaches that have been employed and published until now are reviewed. Finally, an outlook on the future of these techniques will be given.  相似文献   

10.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

11.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   

12.
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 μL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals.Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 μg L−1 with a detection limit of 0.5 μg L−1. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 μg L−1 of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 μg L−1 ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.  相似文献   

13.
Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.  相似文献   

14.
Tso-Ying Chou 《Talanta》2009,80(2):493-9119
Partitioned dispersive liquid-liquid microextraction (PDLLME), using THF as the dispersive solvent and dichloromethane as the extraction solvent, was utilized to isolate and concentrate phenylurea herbicides (PUHs) from aqueous samples. In PDLLME, a dispersive solvent should be able to partition in the organic extractant droplets to effectively extract the polar organic compounds from aqueous samples. The mixture of the water-immiscible extractant and the partitioned dispersive solvent was obtained by centrifugation, dried under low pressure, reconstituted in methanol-water mixture (1:1), and injected into a HPLC system for the determination of PUHs. The enrichment factors of the PUHs ranged from 68 to 126 under the optimal conditions. The linear range was 0.5-100 ng ml−1 for each analyte, the relative standard deviations of PUHs were in the range of 1.5-5.9% (n = 5), and the detection limits (signal-to-noise ratio of 3) ranged from 0.10 to 0.28 ng ml−1 for the herbicides. The range of intraday precision (n = 5) for PUHs at the levels of 0.5, 5, and 50 ng ml−1 were 3.0-5.9%, 1.8-3.3%, and 2.2-3.6%, respectively. The range of interday precision (n = 5) at 0.5, 5, and 50 ng ml−1 were 0.4-1.8%, 1.2-2.4%, and 0.9-2.3%, respectively. The recoveries of PUHs from three spiked river water samples, at a level of 10 ng ml−1, were 91.2-104.1%. Due to its rapidity, ease of operation, and high recovery, PDLLME can be utilized to isolate and concentrate organic environmental contaminants such as PUHs from aqueous samples.  相似文献   

15.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

16.
Dispersive liquid-liquid microextraction (DLLME) and liquid chromatography-electrospray-tandem mass spectrometry (LC-ES-MS/MS) procedure was presented for the extraction and determination of 7-aminoflunitrazepam (7-aminoFM2), a biomarker of the hypnotic flunitrazepam (FM2) in urine sample. The method was based on the formation of tiny droplets of an organic extractant in the sample solution using water-immiscible organic solvent [dichloromethane (DCM), an extractant] dissolved in water-miscible organic dispersive solvent [isopropyl alcohol (IPA)]. First, 7-aminoFM2 from basified urine sample was extracted into the dispersed DCM droplets. The extracting organic phase was separated by centrifuging and the sedimented phase was transferred into a 300 μl vial insert and evaporated to dryness. The residue was reconstituted in 30 μl mobile phase (20:80, acetonitrile:water). An aliquot of 20 μl as injected into LC-ES-MS/MS. Various parameters affecting the extraction efficiency (type and volume of extraction and dispersive solvent, effect of alkali and salt) were evaluated. Under optimum conditions, precision, linearity (correlation coefficient, r2 = 0.988 over the concentration range of 0.05-2.5 ng/ml), detection limit (0.025 ng/ml) and enrichment factor (20) had been obtained. To our knowledge, DLLME was applied to urine sample for the first time.  相似文献   

17.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

18.
The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg+) and mercury (Hg2+) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg+ and Hg2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL−1 for MeHg+ and 0.0014 ng mL−1 for Hg2+, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL−1 MeHg+ and Hg2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.  相似文献   

19.
通过研究萃取剂、分散剂的种类和体积,KHCO3用量,衍生剂乙酸酐的用量和萃取时间对萃取效率的影响,建立了原位衍生分散液相微萃取-气相色谱质谱联用测定水中四溴双酚A的方法.方法线性范围:0.5~ 100 μg/L,检出限:0.1μg/L;RSD:5.4% (n =5).将该方法用于环境水样的测定,加标回收率:53.5% ...  相似文献   

20.
A novel, simple and environmentally friendly procedure for copper determination has been developed. The method is based on the formation of an ion associate of Cu(I) with 1,3,3-trimethyl-2-[5-(1,3,3-trimethyl-1,3-dihydroindol-2-ylidene)-penta-1,3-dienyl]-3H-indolium (DIDC) in the presence of chloride ions as ligand, followed by dispersive liquid-liquid microextraction (DLLME) of the formed ion associate into organic phase and UV-Vis spectrophotometric detection. The following experimental conditions were used: pH 3, 0.24 mol L− 1 chloride ions, 0.06 mmol L− 1 DIDC. The effect of the nature of the extraction solvent, auxiliary solvent and disperser solvent used was studied. A mixture of amyl acetate, tetrachloromethane, and methanol in a 1:1:3 v/v/v ratio was selected for the DLLME procedure. The absorbance of the coloured extracts at 640 nm wavelength obeys Beer's law in the range 0.020-0.090 mg L− 1 of Cu. The limit of detection calculated from a blank test (n = 10) based on 3s is 0.005 mg L− 1 of Cu. The developed procedure was applied to the analysis of water samples. The suggested DLLME is compared with two procedures previously reported from our laboratory based on (1) conventional liquid-liquid extraction, and (2) sequential injection extraction performed in a dual-valve sequential injection system. The advantages and disadvantages of each method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号