首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of native cyclodextrins (alpha, beta, or gammaCD with six, seven and eight glucose units, respectively), hydroxypropyl-beta-cyclodextrin (HPCD), chitosan (CHT) and glucose in water solution or water with n-propylamine (PA) as co-solvent upon the UV-vis and fluorescence properties of poorly fluorescent N-methyl carbamates pesticides (C) as bendiocarb (2,2-dimethyl-1,3-benzodioxol-4-ol methylcarbamate, BC) and promecarb (3-methyl-5-(1-methylethyl)phenol methylcarbame, PC) was examined. Fluorescent enhancement was found for both substrates with all CDs in water or PA-water except from PC with alphaCD. The addition of CHT increases the fluorescence of BC but decreases the fluorescence of PC, and glucose addition gives in both cases no spectral changes. Host-guest interaction was clearly determined by fluorescence enhancement with betaCD and HPCD with a 1:1 stoichiometry for the complexes (C:CD). The values obtained for the association constants (K(A), M(-1)) were (6+/-2)x10(2) and (2.3+/-0.3)x10(2) for BC:betaCD and BC:HPCD complexes, respectively. For PC:betaCD and PC:HPCD the values of K(A) were (19+/-2)x10(2) and (21+/-2)x10(2), respectively. The ratio of the fluorescence quantum yields for the bound and free substrates (phi(CCD)/phi(C)) was in the range 1.74-3.8. The limits of detection (L(D), microg mL(-1)) for the best conditions were (0.57+/-0.02) for BC with HPCD and (0.091+/-0.002) for PC with betaCD in water. Application to the analysis in pesticide spiked samples of tap water and fruit yields satisfactory apparent recoveries (84-114%), and for the extraction procedure in fruits and a commercial formulation, recoveries were of 81-98% and 104%, respectively. The method is rapid, simple, direct, sensitive and useful for pesticide analysis.  相似文献   

2.
alpha-Cyclodextrin, beta-cyclodextrin, N-(6(A)-deoxy-alpha-cyclodextrin-6(A)-yl)-N'6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea and N,N-bis(6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea (alphaCD, betaCD, 1 and 2) form inclusion complexes with E-4-tert-butylphenyl-4'-oxyazobenzene, E-3(-). In aqueous solution at pH 10.0, 298.2 K and I = 0.10 mol dm(-3)(NaClO(4)) spectrophotometric UV-visible studies yield the sequential formation constants: K(11) = (2.83 +/- 0.28) x 10(5) dm(3) mol(-1) for alphaCD.E-(-), K(21) = (6.93 +/- 0.06) x 10(3) dm(3) mol(-1) for (alphaCD)(2).E-3(-), K(11) = (1.24 +/- 0.12) x 10(5) dm(3) mol(-1) for betaCD.E-(-), K(21) = (1.22 +/- 0.06) x 10(4) dm(3) mol(-1) for (betaCD)(2).E-(-), K(11) = (3.08 +/- 0.03) x 10(5) dm(3) mol(-1) for .E-3(-), K(11) = (8.05 +/- 0.63) x 10(4) dm(3) mol(-1) for .E-3(-) and K(12) = (2.42 +/- 0.53) x 10(4) dm(3) mol(-1) for .(E-3(-))(2). (1)H ROESY NMR studies show that complexation of E-3(-) in the annuli of alphaCD, betaCD, 1 and 2 occurs. A variable-temperature (1)H NMR study yields k(298 K)= 6.7 +/- 0.5 and 5.7 +/- 0.5 s(-1), DeltaH = 61.7 +/- 2.7 and 88.1 +/- 4.2 kJ mol(-1) and DeltaS = -22.2 +/- 8.7 and 65 +/- 13 J K(-1) mol(-1) for the interconversion of the dominant includomers (complexes with different orientations of alphaCD) of alphaCD.E-3(-) and (alphaCD)(2).E-3(-), respectively. The existence of E-3(-) as the sole isomer was investigated through an ab initio study.  相似文献   

3.
Directly meso-meso linked porphyrin rings CZ4, CZ6, and CZ8 that respectively comprise four, six, and eight porphyrins have been synthesized in a stepwise manner from a 5,10-diaryl zinc(II) porphyrin building block. Symmetric cyclic structures have been indicated by their very simple (1)H NMR spectra that exhibit only a single set of porphyrin and their absorption spectra that display a characteristic broad nonsplit Soret band around 460 nm. Energy minimized structures calculated at the B3LYP/6-31G* level indicate that a dihedral angle between neighboring porphyrins decreases in order of CZ6 > CZ8 > CZ4, which is consistent with the (1)H NMR data. Photophysical properties of these molecules have been examined by the steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related with the excitation energy migration processes within the porphyrin rings, where the exciton-exciton annihilation time and the polarization anisotropy rise time are well described in terms of the Forster-type incoherent energy hopping model. Consequently, the excitation energy hopping rates have been estimated for CZ4 (119 +/- 2 fs)(-)(1), CZ6 (342 +/- 59 fs)(-)(1), and CZ8 (236 +/- 31 fs)(-)(1), which reflect the magnitude of the electronic coupling between the neighboring porphyrins. Overall, these porphyrin rings serve as a well-defined wheel-shaped light harvesting antenna model in light of very efficient excitation energy hopping along the ring.  相似文献   

4.
Deuterium kinetic solvent isotope effects for the human alpha-thrombin-catalyzed hydrolysis of (1) substrates with selected P(1)-P(3) sites, Z-Pro-Arg-7-amido-4-methylcoumarin (7-AMC), N-t-Boc-Val-Pro-Arg-7-AMC, Bz-Phe-Val-Arg-4-nitroanilide (pNA), and H-D-Phe-L-Pip-Arg-pNA, are (DOD)k(cat) = (2.8-3.3) +/- 0.1 and (DOD)(k(cat)/K(m)) = (0.8-2.1) +/- 0.1 and (2) internally fluorescence-quenched substrates (a) (AB)Val-Phe-Pro-Arg-Ser-Phe-Arg-Leu-Lys(DNP)-Asp-OH, an optimal sequence, and (b) (AB)Val-Ser-Pro-Arg-Ser-Phe-Gln-Lys(DNP)-Asp-OH, recognition sequence for factor VIII, are (DOD)k(cat) = 2.2 +/- 0.2 and (DOD)(k(cat)/K(m)) = (0.8-0.9) +/- 0.1, at the pL (L = H, D) maximum, 8.4-9.0, and (25.0-26.0) +/- 0.1 degrees C. The most plausible models fitting the partial isotope effect (proton inventory) data have been selected on the basis of lowest values of the reduced chi squared and consistency of fractionation factors at all substrate concentrations, assuming rate-determining acylation. The data for Z-Pro-Arg-7-AMC are consistent with a single-proton bridge at the transition state phi(TS) = 0.39 +/- 0.05 and components for solvent reorganization phi(S) = 0.8 +/- 0.1 and phi(S) = 1.22 for k(cat) and k(cat)/K(m), respectively. The data for tripeptide amides fit bowl-shaped curves; an example is N-t-Boc-Val-Pro-Arg-7-AMC: phi(TS)(1) = phi(TS)(2) = 0.57 +/- 0.01 and phi(S) = 1 for k(cat) and 1.6 +/- 0.1 for k(cat)/K(m). Proton inventories for the nonapeptide (2b) are linear. The data for k(cat) for H-D-Phe-L-Pip-Arg-pNA and the decapeptide (2a) are most consistent with two identical fractionation factors for catalytic proton bridging, phi(TS)(1) = phi(TS)(2) = 0.68 +/- 0.02 and a large inverse component (phi(S) = 3.1 +/- 0.5) for the latter, indicative of substantial solvent reorganization upon leaving group departure. Proton inventory curves for k(cat)/K(m) for nearly all substrates are dome-shaped with an inverse isotope effect component (phi(S) = 1.2-2.4) originating from solvent reorganization during association of thrombin with substrate. These large contributions from medium effects are in full accord with the conformational adjustments required for the fulfillment of the dual, hemostatic and thrombolytic, functions of thrombin.  相似文献   

5.
Polymer-polymer interactions were investigated for mixtures of a poly(acrylic acid) (pAA) carrying azobenzene (pC12Azo) and two kinds of pAA carrying alpha-cyclodextrin (CD), in which CDs are attached to the main chain through the 3- and 6-positions in CD (p3alphaCD and p6alphaCD, respectively), using several techniques, such as viscosity and NMR measurements. Viscosity data exhibited contrast changes upon UV irradiation: thinning (p3alphaCD/pC12Azo) and thickening (p6alphaCD/pC12Azo). NOESY spectra confirmed that the contrast viscosity changes were ascribable to differences in how CD moieties interact with pC12Azo after photoisomerization of azobenzene moieties from trans to cis: dissociation of inclusion complexes (p3alphaCD/pC12Azo) and formation of interlocked complexes (p6alphaCD/pC12Azo).  相似文献   

6.
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.  相似文献   

7.
The trivalent fluorophosphine (+/-)-PFPh(i-Pr), (+/-)-1, has been prepared by halogen exchange of the corresponding chlorophosphine with sodium fluoride in hot sulfolane. The neat fluorophosphine rapidly decomposes by equilibrium redox disproportionation into PF(3)Ph(i-Pr) and (R,R)/(R,S)-Ph(i-Pr)PPPh(i-Pr), but in benzene, (+/-)-1 has considerable thermodynamic stability. The resolution of (+/-)-1 was achieved by a fractional crystallization of the diastereomers (R,R(P))- and (R,S(P))-chloro[1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N](fluorophenylisopropylphosphine)palladium(II), (R,R(P))- and (R,S(P))-5, whereby the less soluble (R,R(P)) diastereomer selectively crystallized in 64% yield in a typical second-order asymmetric transformation. Optically pure (S)-(-)-1, -210 (c 0.59, C(6)H(6)), was liberated from (R,R(P))-5 with (R,S)-1,2-phenylenebis(methylphenylphosphine). The optically active phosphine in benzene racemizes over 6 h without significant redox disproportionation. The methoxyphosphine (+/-)-P(OMe)Ph(i-Pr), (+/-)-9, was also resolved by the method of metal complexation. Thus, fractional crystallization of (R,R(P))- and (R,S(P))-chloro[1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N](methoxyphenylisopropylphosphine)palladium(II), (R,R(P))- and (R,S(P))-8, followed by liberation of the respective optically active methoxyphosphines from the separated diastereomers with 1,2-bis(diphenylphosphino)ethane, gave (R)-(+)- and (S)-(-)-9 of 92% and 96% ee, respectively. The barrier to unimolecular inversion for (+/-)-9 was determined to be >82.9 +/- 0.5 kJ mol(-)(1) by variable temperature (1)H NMR spectroscopy. The substitution of fluoride in (R,R(P))-5 by methoxide proceeds with predominant inversion of the configuration at phosphorus to give (R,R(P))- and (R,S(P))-8 with (R,S(P))/(R,R(P)) = (1)/(5). The crystal structures of (R,R(P))-5 and (R,R(P))-8 have been determined: (R,R(P))-5 (C(23)H(28)ClFNPPd) crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 9.967(2) ?, b = 10.998(4) ?, c = 21.324(3) ?, Z = 4, and R = 0.031; (R,R(P))-8 (C(24)H(31)ClNOPPd) crystallizes in the space group P2(1)2(1)2(1) with a = 10.444(3) ?, b = 12.146(3) ?, c = 19.047(2) ?, Z = 4, and R = 0.026.  相似文献   

8.
In this paper, the formation of hydroxypropyl-β-cyclodextrin (HPCD) nanofibers in electrospinning and the adsorption of organic molecules on the HPCD nanofiber were studied. The properties of a polymer-like solution from the highly concentrated HPCD/N,N-dimethylformamide (DMF) solution revealed HPCD supramolecular aggregates formation. The entanglements of HPCD self-organized aggregates were one of the most important factors that significantly influenced fiber formation during cyclodextrin electrospinning. The HPCD self-organized aggregates entanglement concentration (C(e)) was investigated. Analyzing the dependence of specific viscosity (η(sp)) on concentration enabled the determination of the aggregates unentangled and entangled regimes for HPCD polymer-like solutions. The dynamic light scattering (DLS) measurements and the (1)H NMR spectra of the HPCD solutions confirmed the presence of considerable HPCD self-organized aggregates in high concentrated HPCD/DMF solutions due to the intermolecular hydrogen bonding. The scanning electron microscopy (SEM) showed the electrospinning morphology transitioned from regular beads to uniform fibers with increasing the HPCD concentration. The dependence of the fiber diameter on the zero shear rate viscosity (η(0)) was determined. The static adsorption behavior of the HPCD fibers was studied. Neutral red (NR) was used as a model organic molecule. The adsorption of NR onto HPCD fibers fitted the pseudo-second-order kinetic model. The equilibrium adsorption amount of NR was 18.41 mg g(-1), and the apparent adsorption rate constant was 9.83 × 10(-4) g mg(-1) min(-1) at 25 °C.  相似文献   

9.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

10.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

11.
Thermal and photochemical reactions of nitroaquacobalt(III) tetraphenylporphyrin, (NO(2))(H(2)O)Co(III)TPP, have been investigated in toluene solutions containing triphenylphosphine, P phi(3). It is found that Pphi(3) thermally abstracts an oxygen atom from the NO(2) moiety of (NO(2))(H(2)O)Co(III)TPP with a rate constant 0.52 M(-1) s(-1), resulting in the formation of nitrosylcobalt porphyrin, (NO)CoTPP. The 355-nm laser photolysis of (NO(2))(H(2)O)Co(III)TPP at low concentrations of P phi(3) (<1.0 x 10(-4) M) gives Co(II)TPP and NO(2) as intermediates. The recombination reaction of Co(II)TPP and NO(2) initially forms the coordinately unsaturated nitritocobalt(III) tetraphenylporphyrin, (ON-O)Co(III)TPP, which reacts with P phi(3) to yield nitro(triphenylphosphine)cobalt(III) tetraphenylporphyrin, (NO(2))(P phi(3))Co(III)TPP. Subsequently, the substitution reaction of the axial P phi(3) with H(2)O leads to the regeneration of (NO(2))(H(2)O)Co(III)TPP. From the kinetic studies, the substitution reaction is concluded to occur via a coordinately unsaturated nitrocobalt(III) porphyrin, (NO(2))Co(III)TPP. At higher concentrations of P phi(3) (>4 x 10(-3) M), (NO(2))(H(2)O)Co(III)TPP reacts with P phi(3) to form (NO(2))(P phi(3))Co(III)TPP: the equilibrium constant is obtained as K = 4.3. The X-ray structure analysis of (NO(2))(P phi(3))Co(III)TPP reveals that the P-Co-NO(2) bond angle is 175.0(2) degrees and the bond length Co-NO(2) is 2.000(7) A. In toluene solutions of (NO(2))(H(2)O)Co(III)TPP containing P phi(3) (>4 x 10(-3) M), the major light-absorbing species is (NO(2))(P phi(3))Co(III)TPP, which yields (NO)CoTPP by continuous photolysis. The laser photolysis of (NO(2))(P phi(3))Co(III)TPP gives Co(II)TPP, NO(2), and P phi(3) as initial products. The NO(2) molecule is suggested to be reduced by P phi(3) to yield NO, and the reaction between NO and Co(II)TPP gives (NO)CoTPP. The quantum yield for the photodecomposition of (NO(2))(P phi(3))Co(III)TPP is determined as 0.56.  相似文献   

12.
Decaborane(14) reacts with 1-(CH(3))(3)SiC&tbd1;CC(4)H(9) in the presence of dimethyl sulfide to give the new alkenyldecaborane 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) (I). Crystal data for 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11): space group P2(1)/n, monoclinic, a = 9.471(1) ?, b = 13.947(3) ?, c = 17.678(3) ?, beta = 100.32(1) degrees. A total of 3366 unique reflections were collected over the range 2.0 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.083; R(w)(F)() = 0.094. The single-crystal X-ray structure of 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) (A) is also reported. Crystal data for 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11): space group, P2(1)2(1)2(1), orthorhombic, a = 9.059 (3) ?, b = 12.193(4) ?, c = 21.431(3) ?. A total of 4836 unique reflections were collected over the range 6 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.052; R(w)(F)() = 0.059. The reactions of 5-(S(CH(3))(2))6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) and 5-(S(CH(3))(2))6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) with a variety of alkyl isocyanides were investigated. All of the alkenyl monocarbon carboranes reported are the result of incorporation of the carbon atom from the isocyanide into the alkenyldecaborane framework and reduction of N&tbd1;C bond to a N-C single bond. The characterization of these compounds is based on (1)H and (11)B NMR data, IR spectroscopy, and mass spectrometry.  相似文献   

13.
(E)-4-tert-Butyl-4'-oxystilbene, 1(-), is thermally stable as the (E)-1(-) isomer but may be photoisomerized to the (Z)-1(-) isomer as shown by UV-vis and (1)H NMR studies in aqueous solution. When (E)-1(-) is complexed by alphaCD two inclusion isomers (includomers) form in which alphaCD assumes either of the two possible orientations about the axis of (E)-1(-) in alphaCD.(E)-1(-) for which (1)H NMR studies yield the parameters: k(1)(298 K)= 12.3 +/- 0.6 s(-1), DeltaH(1)(++)= 94.3 +/- 4.7 kJ mol(-1), DeltaS1(++)= 92.0 +/- 5.0 J K(-1) mol(-1), and k(2)(298 K)= 10.7 +/- 0.5 s(-1), DeltaH(2)(++)= 93.1 +/- 4.7 kJ mol(-1), DeltaS2(++)= 87.3 +/- 5.0 J K(-1) mol(-1) for the minor and major includomers, respectively. The betaCD.(E)-1(-) complex either forms a single includomer or its includomers interchange at the fast exchange limit of the (1)H NMR timescale. Complexation of 1(-) by N-(6(A)-deoxy- alpha-cyclodextrin-6(A)-yl)-N'-(6(A)-deoxy- beta-cyclodextrin-6(A)-yl)urea, results in the binary complexes 2.(E)-1(-) in which both CD component annuli are occupied by (E)-1(-) and which exists exclusively in darkness and 2.(Z)-1(-) in which only one CD component is occupied by (Z)-1(-) and exists exclusively in daylight at lambda > or = 300 nm. Irradiation of solutions of the binary complexes at 300 and 355 nm results in photostationary states dominated by 2.(E)-1(-) and 2.(Z)-1(-), respectively. In the presence of 4-methylbenzoate, 4(-), 2.(Z)-1(-) forms the ternary complex 2.(Z)-1(-).4(-) where 4(-) occupies the second CD annulus. Interconversion occurs between 2.(Z)-1(-).4(-) and 2.(E)-1(-)+4(-) under the same conditions as for the binary complexes alone. Similar interactions occur in the presence of 4-methylphenolate and 4-methylphenylsulfonate. The two isomers of each of these systems represent different states of a molecular device, as do the analogous binary complexes of N,N-bis(6(A)-deoxy- beta-cyclodextrin-6(A)-yl)urea, 3, [3.(E)-1(-) and 3.(Z)-1(-), where the latter also forms a ternary complex with 4(-).  相似文献   

14.
The reactions of the lithium salts of the proligands P(C(6)H(4)-2-SH)(3) (P((H)SH)(3)), P(C(6)H(3)-3-SiMe(3)-2-SH)(3) (P((TMS)SH)(3)), and P(C(6)H(3)-5-Me-2-SH)(3) (P((Me)SH)(3)) with RSnCl(3) (R = Ph, Me, n-Bu), in THF at 0 degrees C, produced a series of trigonal-bipyramidal complexes of the type RSn(PS(3)). The crystal structures of PhSn(P(H)S(3)), PhSn(P(TMS)S(3)), and PhSn(P(Me)S(3)) reveal considerable distortion from local C(3v) symmetry for the Sn(PS(3)) group. Unique to PhSn(P(Me)S(3)) is the presence of intramolecular hydrogen bonding between one sulfur atom and an ortho H atom of the Ph group, creating a plane that includes this S atom and the corresponding C(6)H(3) ring, a phosphorus atom, and the PhSn group. An analysis of the (1)H, (13)C, and (31)P NMR data from a combination of HMQC, HMBC, 2-D COSY, and (1)H{(31)P} NMR studies reveals that in solution the Sn(PS(3)) groups exhibit local C(3v) symmetry, even at low temperature. Byproducts frequently found in the synthesis of the proligands and tin complexes, and subsequent reactions, result from the oxidation of the trianionic tristhiolatophosphine ligand. The crystal structure of one of these, [OP((H)S(3))](2), shows that the molecule contains two ligands joined by a S-S bond. Within each original ligand the remaining two sulfur atoms form a S-S bond, and each phosphorus atom is oxidized. PhSn(P(TMS)S(3)) reacted with 2 equiv of FeCl(3) in CH(2)Cl(2) to produce the iron(IV) complex FeCl(P(TMS)S(3)). FeCl(P(TMS)S(3)) decomposed in the presence of excess FeCl(3). Similar transmetalation reactions with FeCl(2) or [Fe(2)OCl(6)](2)(-) required the addition of ferrocenium ion to complete the oxidation of iron to 4+. RuCl(P(TMS)S(3)) was prepared by the reaction between PhSn(P(TMS)S(3)) and RuCl(2)(DMSO)(4) without the addition of an external oxidizing agent.  相似文献   

15.
The synthesis, structure, and physical properties of a Heisenberg exchange-coupled cluster containing naphthalene groups are described. [Fe2(O)(O2CCH2C10H7)2(TACN-Me3)2]2+ (3) crystallizes in space group P1 with unit cell parameters a = 12.94(2) A, b = 14.84(2) A, c = 15.23(2) A, alpha = 101.12(7) degrees, beta = 90.8(1) degrees, gamma = 114.14(7) degrees, V = 2605(6) A3, and Z = 2 with R = 0.0425 and wR2 = 0.1182. Variable-temperature magnetic susceptibility data indicate that the two high-spin FeIII centers are antiferromagnetically coupled with J = -105 cm-1 (H = -2 JS1.S2), which is typical for this class of compounds. The room-temperature static emission spectrum of the compound in deoxygenated CH3CN solution is centered near 335 nm and has features reminiscent of both methyl-2-naphthylacetate (1) and [Zn2(OH)(O2CCH2C10H7)2(TACN-Me3)2]+ (2) with the following two caveats: (1) the overall emission intensity is roughly a factor of 10 less than that of the free ester (1, phi = 0.13) or the ZnII analogue (2, phi = 0.14), and (2) there is significant broadening of the low-energy shoulder of the emission envelope. Time-correlated single photon counting data revealed biphasic emission for 3 with tau 1 = 4.6 +/- 1 ns and tau 2 = 47 +/- 1 ns. The latter compares favorably with that found for 2 (tau = 47 +/- 1 ns) and is assigned as the S0-S1 fluorescence of naphthalene. Emission anisotropy, time-gated emission spectra, and nanosecond time-resolved absorption measurements all support the assignment of the 4.6 ns component as being due to a singlet excimer that forms between the two naphthylacetate groups of 3, a process that is likely mediated by the structural constraints of the oxo-bis-carboxylato diiron core. No direct evidence for intramolecular electron and/or energy transfer from the photoexcited naphthyl group to the iron-oxo core was obtained, suggesting that the short-lived excimer may contribute to circumventing such pathways in this type of system.  相似文献   

16.
A 1:1 mixture of a tris(Zn(II)-cyclen) (1: [Zn(3)L(1)], L(1)=1,3,5-tris(1,4,7,10-tetraazacyclododecan-1-ylmethyl)benzene) and trithiocyanuric acid (TCA) yielded a 4:4 self-assembly complex [(Zn(3)L(1))(4)-(TCA(3-))(4)] (6) through the formation of Zn(II)-S(-) coordination bonds and hydrogen bonds between 1,3,5-triazine N and cyclen NH (cyclen=1,4,7,10-tetraazacyclododecane); the supramolecular capsule structure was revealed by X-ray crystal structure analysis. The capsule exterior represents a twisted cuboctahedral framework containing a nanoscale truncated tetrahedral cavity. The crystal data: formula C(144)H(308)N(72)O(58)S(12)Zn(12) (6[NO(3)](12) x 22 H(2)O), M(r)=5145.75, cubic, space group F432 (No. 209), a=39.182(1) A, V=60153(3) A (3), Z=8, R=0.100, R(w)=0.259. Lipophilic organic molecules with the matching sizes, for example, ([D(4)]-2,2,3,3)-3-(trimethylsilyl)propionic acid (TSP), 1-adamantanecarboxylic acid, 2,4-dinitrophenol (2,4-DNP), adamantane (ADM), or the tetra-n-propylammonium (TPA) cation, are encapsulated in the inner cavity, as revealed by remarkable upfield shifts of the (1)H NMR signals of these guest molecules. The encapsulation of ADM was confirmed by X-ray crystal structure analysis. Crystal data of the ADM-encapsulating complex: formula C(154)H(334)N(72)O(63)S(12)Zn(12) (6-ADM[NO(3)](12) x 27 H(2)O), M(r)=5372.06, cubic, space group F432 (No. 209), a=39.061(1) A, V=59599(3) A(3), Z=8, R=0.103, R(w)=0.263. The 4:4 self-assembly was stabilized by incorporation of one of these guest molecules. The apparent 4:4 self-assembly constants for 6 in the presence of an excess amount of a guest TPA, log K(app) (K(app)=[6-TPA]/[1](4)[TCA](4)) (M(-7))), were determined to be 34.0+/-2.0 and 35.5+/-3.0 by potentiometric pH and UV spectrophotometric titrations, respectively. An apparent encapsulation constant for 2,4-DNP, log K(enc) (K(enc)=[6-2,4-DNP]/[6][2,4-DNP] (M(-1))), was 6.0+/-0.1 at pH 7.0 (50 mM HEPES with I=0.1 (NaNO(3))), as determined by UV titrations. The lipophilicity of the inner cavity was close to that of 2-propanol, as a quantum yield (phi) of 0.24+/-0.1 for the fluorescent emission of 7-diethylaminocoumarin-1-carboxylic acid (20 microM) in the capsule was close to the phi of 0.22 found for 2-propanol. Encapsulation properties of the present Zn(II)-containing cage have been compared with those of cyclodextrins and Fujita's Pd(II)-containing supramolecular cage. The exterior chirality of the 4:4 complex was controlled from within by an encapsulated chiral guest molecule, 2,10-camphorsultam, as indicated by Cotton effects in the circular dichroism spectra.  相似文献   

17.
Chen CH  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(5):2307-2316
The shift of the IR nu(S)(-)(H) frequency to lower wavenumbers for the series of complexes [Ni(II)(L)(P-(o-C6H4S)2(o-C6H4SH))]0/1- (L = PPh3 (1), Cl (6), Se-p-C6H4-Cl (5), S-C4H3S (7), SePh (4)) indicates that a trend of increasing electronic donation of the L ligands coordinated to the Ni(II) center promotes intramolecular [Ni-S...H-S] interactions. Compared to the Ni...S(H) distance, in the range of 3.609-3.802 A in complexes 1 and 4-7, the Ni...S(CH3) distances of 2.540 and 2.914 A observed in the [Ni(II)(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] complexes (8a and 8b, two conformational isomers with the chemical shift of the thioether methyl group at delta 1.820 (-60 degrees C) and 2.109 ppm (60 degrees C) (C4D8O)) and the Ni...S(CH3) distances of 3.258 and 3.229 A found in the [Ni(II)(L)(P(o-C6H4S)2(o-C6H4-SCH3))]1- complexes (L = SPh (9), SePh (10)) also support the idea that the pendant thiol protons of the Ni(II)-thiol complexes 1/4-7 were attracted by both the sulfur of thiolate and the nickel. The increased basicity (electronic density) of the nickel center regulated by the monodentate ligand attracted the proton of the pendant thiol effectively and caused the weaker S...H bond. In addition, the pendant thiol interaction modes in the solid state (complexes 1a and 1b, Scheme 1) may be controlled by the solvent of crystallization. Compared to complex 1a, the stronger intramolecular [Ni-S...H-S] interaction (or a combination of [Ni-S...H-S]/[Ni...H-S] interactions) found in complexes 4-7 led to the weaker S-H bond strength and accelerated the oxidation (by O2) of complexes 4-7 to produce the [Ni(Y)(L)(P(o-C6H4S)3)]1- (L = Se-p-C6H4-Cl (11), SePh (12), S-C4H3S (13)) complexes.  相似文献   

18.
Rate constants for the reactions of OH radicals and NO(3) radicals with diethyl methylphosphonate [DEMP, (C(2)H(5)O)(2)P(O)CH(3)], diethyl ethylphosphonate [DEEP, (C(2)H(5)O)(2)P(O)C(2)H(5)], and triethyl phosphate [TEP, (C(2)H(5)O)(3)PO] have been measured at 296 +/- 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were as follows: DEMP, 5.78 +/- 0.24; DEEP, 6.45 +/- 0.27; and TEP, 5.44 +/- 0.20. The rate constants obtained for the NO(3) radical reactions (in units of 10(-16) cm(3) molecule(-1) s(-1)) were the following: DEMP, 3.7 +/- 1.1; DEEP, 3.4 +/- 1.4; and TEP, 2.4 +/- 1.4. For the reactions of O(3) with DEMP, DEEP, and TEP, an upper limit to the rate constant of <6 x 10(-20) cm(3) molecule(-1) s(-1) was determined for each compound. Products of the reactions of OH radicals with DEMP, DEEP, and TEP were investigated using in situ atmospheric pressure ionization mass spectrometry (API-MS) and, for the TEP reaction, gas chromatography with flame ionization detection (GC-FID) and in situ Fourier transform infrared (FT-IR) spectroscopy. The API-MS analyses show that the reactions are analogous, with formation of one major product from each reaction: C(2)H(5)OP(O)(OH)CH(3) from DEMP, C(2)H(5)OP(O)(OH)C(2)H(5) from DEEP, and (C(2)H(5)O)(2)P(O)OH from TEP. The FT-IR and GC-FID analyses showed that the major products (and their molar yields) from the TEP reaction are (C(2)H(5)O)(2)P(O)OH (65-82%, initial), CO(2) (80 +/- 10%), and HCHO (55 +/- 5%), together with lesser yields of CH(3)CHO (11 +/- 2%), CO (11 +/- 3%), CH(3)C(O)OONO(2) (8%), organic nitrates (7%), and acetates (4%). The probable reaction mechanisms are discussed.  相似文献   

19.
The kinetics of the reaction between [S(2)MoS(2)Cu(SC(6)H(4)R-4)](2-)(R = MeO, H, Cl or NO(2)) and CN(-) to form [S(2)MoS(2)CuCN](2-) have been studied in MeCN using stopped-flow spectrophotometry. In all cases, the rate law is of the form, Rate ={k+k(2)(R)[CN(-)]}[S(2)MoS(2)Cu(SC(6)H(4)R-4)(2-)]. It is proposed that both k and k correspond to associative substitution mechanisms. The k pathway involves attack by CN(-) at the copper site followed by dissociation of the thiolate. The k pathway involves attack of the solvent (MeCN) at the copper site, followed by dissociation of the thiolate to form [S(2)MoS(2)Cu(NCMe)](-). Subsequent rapid substitution of the coordinated solvent by cyanide produces [S(2)MoS(2)CuCN](2-). The evidence that both the k and k pathways involve associative mechanisms are: (i) the 4-R-substituent on the thiolate ligand has a similar effect on both k and k, with electron-withdrawing 4-R-substituents facilitating substitution; (ii) both the k and k pathways are associated with similar activation parameters (for k(1)(H): DeltaH++ = 5.5 +/- 0.5 kcal mol(-1), DeltaS++ = -23.9 +/- 2.0 cal deg(-1) mol(-1); for k(2)(H): DeltaH++ = 2.3 +/- 0.5 kcal mol(-1), DeltaS++ = - 23.9 +/- 2.0 cal deg(-1) mol(-1)) and (iii) addition of C(6)H(5)S(-) results in a similar increase in both k and k.  相似文献   

20.
Reported is a time-resolved infrared and optical kinetics investigation of the transient species CH(3)C(O)Mn(CO)(4) (I(Mn)) generated by flash photolysis of the acetyl manganese pentacarbonyl complex CH(3)C(O)Mn(CO)(5) (A(Mn)) in cyclohexane and in tetrahydrofuran. Activation parameters were determined for CO trapping of I(Mn) to regenerate A(Mn) (rate = k(CO) [CO][I(Mn)]) as well as the methyl migration pathway to form methylmanganese pentacarbonyl CH(3)Mn(CO)(5) (M(Mn)) (rate = k(M)[I(Mn)]). These values were Delta H(++)(CO) = 31 +/- 1 kJ mol(-1), Delta S(++)(CO) = -64 +/- 3 J mol(-1) K(-1), Delta H(++)(M) = 35 +/- 1 kJ mol(-1), and Delta S(++)(M) = -111 +/- 3 J mol(-1) K(-1). Substantially different activation parameters were found for the methyl migration kinetics of I(Mn) in THF solutions where Delta H(++)(M) = 68 +/- 4 kJ mol(-1) and Delta S(++)(M) = 10 +/- 10 J mol(-1) K(-1), consistent with the earlier conclusion (Boese, W. T.; Ford, P. C. J. Am. Chem. Soc. 1995, 117, 8381-8391) that the composition of I(Mn) is different in these two media. The possible isotope effect on k(M) was also evaluated by studying the intermediates generated from flash photolysis of CD(3)C(O)Mn(CO)(5) in cyclohexane, but this was found to be nearly negligible (k(M)(h)/k(M)(d) (298 K) = 0.97 +/- 0.05, Delta H(++)(M)(d) = 37 +/- 4 kJ mol(-1), and Delta S(++)(M)(d) = -104 +/- 12 J mol(-1) K(-1)). The relevance to the migratory insertion mechanism of CH(3)Mn(CO)(5), a model for catalytic carbonylations, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号