共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognition of speech stimuli consisting of monosyllabic words, sentences, and nonsense syllables was tested in normal subjects and in a subject with a low-frequency sensorineural hearing loss characterized by an absence of functioning sensory units in the apical region of the cochlea, as determined in a previous experiment [C. W. Turner, E. M. Burns, and D. A. Nelson, J. Acoust. Soc. Am. 73, 966-975 (1983)]. Performance of all subjects was close to 100% correct for all stimuli presented unfiltered at a moderate intensity level. When stimuli were low-pass filtered, performance of the hearing-impaired subject fell below that of the normals, but was still considerably above chance. A further diminution in the impaired subject's recognition of nonsense syllables resulted from the addition of a high-pass masking noise, indicating that his performance in the filtered quiet condition was attributable in large part to the contribution of sensory units in basal and midcochlear regions. Normals' performance was also somewhat decreased by the masker, suggesting that they also may have been extracting some low-frequency speech cues from responses of sensory units located in the base of the cochlea. 相似文献
2.
The perception of fundamental pitch for two-harmonic complex tones was examined in musically experienced listeners with cochlear-based high-frequency hearing loss. Performance in a musical interval identification task was measured as a function of the average rank of the lowest harmonic for both monotic and dichotic presentation of the harmonics at 14 dB Sensation Level. Listeners with hearing loss demonstrated excellent musical interval identification at low fundamental frequencies and low harmonic numbers, but abnormally poor identification at higher fundamental frequencies and higher average ranks. The upper frequency limit of performance in the listeners with hearing loss was similar in both monotic and dichotic conditions. These results suggest that something other than frequency resolution per se limits complex-tone pitch perception in listeners with hearing loss. 相似文献
3.
Kanamycin induced low-frequency hearing loss in the budgerigar (Melopsittacus undulatus) 总被引:3,自引:0,他引:3
The chronic effects of kanamycin (KM) on hearing in the budgerigar were investigated by behavioral audiometry. The birds received a daily intramuscular injection of KM (100 mg/kg or 200 mg/kg) for 10 successive days, and absolute thresholds between pre- and post-treatment were compared. KM induced both transient and permanent low-frequency specific hearing loss; i.e., the elevation of threshold for frequencies below 1 kHz was greater than that for frequencies above 1 kHz. Moreover, the degree of hearing loss was dose dependent. The low-frequency selective effects of KM in the present study were contrary to the high-frequency specificity of aminoglycoside ototoxicity in mammals. To assess the effect of KM on auditory frequency resolution, critical ratios were estimated in pathological birds with low-frequency specific hearing loss. There was a linear relation between shift in critical ratio and shift in absolute threshold, suggesting that the increase in the critical ratio is due to a decrease in the efficiency of the detector mechanism rather than a change in the spectral resolving power of the birds. 相似文献
4.
This study tested the relationship between frequency selectivity and the minimum spacing between harmonics necessary for accurate fo discrimination. Fundamental frequency difference limens (fo DLs) were measured for ten listeners with moderate sensorineural hearing loss (SNHL) and three normal-hearing listeners for sine- and random-phase harmonic complexes, bandpass filtered between 1500 and 3500 Hz, with fo's ranging from 75 to 500 Hz (or higher). All listeners showed a transition between small (good) fo DLs at high fo's and large (poor) fo DLs at low fo's, although the fo at which this transition occurred (fo,tr) varied across listeners. Three measures thought to reflect frequency selectivity were significantly correlated to both the fo,tr and the minimum fo DL achieved at high fo's: (1) the maximum fo for which fo DLs were phase dependent, (2) the maximum modulation frequency for which amplitude modulation and quasi-frequency modulation were discriminable, and (3) the equivalent rectangular bandwidth of the auditory filter, estimated using the notched-noise method. These results provide evidence of a relationship between fo discrimination performance and frequency selectivity in listeners with SNHL, supporting "spectral" and "spectro-temporal" theories of pitch perception that rely on sharp tuning in the auditory periphery to accurately extract fo information. 相似文献
5.
The speech understanding of persons with sloping high-frequency (HF) hearing impairment (HI) was compared to normal hearing (NH) controls and previous research on persons with "flat" losses [Hornsby and Ricketts (2003). J. Acoust. Soc. Am. 113, 1706-1717] to examine how hearing loss configuration affects the contribution of speech information in various frequency regions. Speech understanding was assessed at multiple low- and high-pass filter cutoff frequencies. Crossover frequencies, defined as the cutoff frequencies at which low- and high-pass filtering yielded equivalent performance, were significantly lower for the sloping HI, compared to NH, group suggesting that HF HI limits the utility of HF speech information. Speech intelligibility index calculations suggest this limited utility was not due simply to reduced audibility but also to the negative effects of high presentation levels and a poorer-than-normal use of speech information in the frequency region with the greatest hearing loss (the HF regions). This deficit was comparable, however, to that seen in low-frequency regions of persons with similar HF thresholds and "flat" hearing losses suggesting that sensorineural HI results in a "uniform," rather than frequency-specific, deficit in speech understanding, at least for persons with HF thresholds up to 60-80 dB HL. 相似文献
6.
Carlyon RP van Wieringen A Long CJ Deeks JM Wouters J 《The Journal of the Acoustical Society of America》2002,112(2):621-633
Two experiments investigated pitch perception for stimuli where the place of excitation was held constant. Experiment 1 used pulse trains in which the interpulse interval alternated between 4 and 6 ms. In experiment 1a these "4-6" pulse trains were bandpass filtered between 3900 and 5300 Hz and presented acoustically against a noise background to normal listeners. The rate of an isochronous pulse train (in which all the interpulse intervals were equal) was adjusted so that its pitch matched that of the "4-6" stimulus. The pitch matches were distributed unimodally, had a mean of 5.7 ms, and never corresponded to either 4 or to 10 ms (the period of the stimulus). In experiment 1b the pulse trains were presented both acoustically to normal listeners and electrically to users of the LAURA cochlear implant, via a single channel of their device. A forced-choice procedure was used to measure psychometric functions, in which subjects judged whether the 4-6 stimulus was higher or lower in pitch than isochronous pulse trains having periods of 3, 4, 5, 6, or 7 ms. For both groups of listeners, the point of subjective equality corresponded to a period of 5.6 to 5.7 ms. Experiment 1c confirmed that these psychometric functions were monotonic over the range 4-12 ms. In experiment 2, normal listeners adjusted the rate of an isochronous filtered pulse train to match the pitch of mixtures of pulse trains having rates of F1 and F2 Hz, passed through the same bandpass filter (3900-5400 Hz). The ratio F2/F1 was 1.29 and F1 was either 70, 92, 109, or 124 Hz. Matches were always close to F2 Hz. It is concluded that the results of both experiments are inconsistent with models of pitch perception which rely on higher-order intervals. Together with those of other published data on purely temporal pitch perception, the data are consistent with a model in which only first-order interpulse intervals contribute to pitch, and in which, over the range 0-12 ms, longer intervals receive higher weights than short intervals. 相似文献
7.
Resolution of front-back ambiguity in spatial hearing by listener and source movement. 总被引:5,自引:0,他引:5
Normally, the apparent position of a sound source corresponds closely to its actual position. However, in some experimental situations listeners make large errors, such as indicating that a source in the frontal hemifield appears to be in the rear hemifield, or vice versa. These front-back confusions are thought to be a result of the inherent ambiguity of the primary interaural difference cues, interaural time difference (ITD) in particular. A given ITD could have been produced by a sound source anywhere on the so-called "cone of confusion." More than 50 years ago Wallach [J. Exp. Psychol. 27, 339-368 (1940)] argued that small head movements could provide the information necessary to resolve the ambiguity. The direction of the change in ITD that accompanies a head rotation is an unambiguous indicator of the proper hemifield. The experiments reported here are a modern test of Wallach's hypothesis. Listeners indicated the apparent positions of real and virtual sound sources in conditions in which head movements were either restricted or encouraged. The front-back confusions made in the restricted condition nearly disappeared in the condition in which head movements were encouraged. In a second experiment head movements were restricted, but the sound source was moved, either by the experimenter or by the listener. Only when the listener moved the sound source did front-back confusions disappear. The results clearly support Wallach's hypothesis and suggest further that head movements are not required to produce the dynamic cues needed to resolve front-back ambiguity. 相似文献
8.
J P Gagné 《The Journal of the Acoustical Society of America》1988,83(6):2311-2321
Three experiments were conducted to determine whether listeners with a sensorineural hearing loss exhibited greater than normal amounts of masking at frequencies above the frequency of the masker. Excess masking was defined as the difference (in dB) between the masked thresholds actually obtained from a hearing-impaired listener and the expected thresholds calculated for the same individual. The expected thresholds were the power sum of the listener's thresholds in quiet and the average masked thresholds obtained from a group of normal-hearing subjects at the test frequency. Hearing-impaired listeners, with thresholds in quiet ranging from approximately 35-70 dB SPL (at test frequencies between 500-3000 Hz), displayed approximately 12-15 dB of maximum excess masking. The maximum amount of excess masking occurred in the region where the threshold in quiet of the hearing-impaired listener and the average normal masked threshold were equal. These findings indicate that listeners with a sensorineural hearing loss display one form of reduced frequency selectivity (i.e., abnormal upward spread of masking) even when their thresholds in quiet are taken into account. 相似文献
9.
The speech understanding of persons with "flat" hearing loss (HI) was compared to a normal-hearing (NH) control group to examine how hearing loss affects the contribution of speech information in various frequency regions. Speech understanding in noise was assessed at multiple low- and high-pass filter cutoff frequencies. Noise levels were chosen to ensure that the noise, rather than quiet thresholds, determined audibility. The performance of HI subjects was compared to a NH group listening at the same signal-to-noise ratio and a comparable presentation level. Although absolute speech scores for the HI group were reduced, performance improvements as the speech and noise bandwidth increased were comparable between groups. These data suggest that the presence of hearing loss results in a uniform, rather than frequency-specific, deficit in the contribution of speech information. Measures of auditory thresholds in noise and speech intelligibility index (SII) calculations were also performed. These data suggest that differences in performance between the HI and NH groups are due primarily to audibility differences between groups. Measures of auditory thresholds in noise showed the "effective masking spectrum" of the noise was greater for the HI than the NH subjects. 相似文献
10.
Forward- and simultaneous-masked thresholds were measured at 0.5 and 2.0 kHz in bandpass maskers as a function of masker bandwidth and in a broadband masker with the goal of estimating psychophysical suppression. Suppression was operationally defined in two ways: (1) as a change in forward-masked threshold as a function of masker bandwidth, and (2) as a change in effective masker level with increased masker bandwidth, taking into account the nonlinear growth of forward masking. Subjects were younger adults with normal hearing and older adults with cochlear hearing loss. Thresholds decreased as a function of masker bandwidth in forward masking, which was attributed to effects of suppression; thresholds remained constant or increased slightly with increasing masker bandwidth in simultaneous masking. For subjects with normal hearing, slightly larger estimates of suppression were obtained at 2.0 kHz rather than at 0.5 kHz. For hearing-impaired subjects, suppression was reduced in regions of hearing loss. The magnitude of suppression was strongly correlated with the absolute threshold at the signal frequency, but did not vary with thresholds at frequencies remote from the signal. The results suggest that measuring forward-masked thresholds in bandlimited and broadband maskers may be an efficient psychophysical method for estimating suppression. 相似文献
11.
D Henderson R Salvi G Pavek R Hamernik 《The Journal of the Acoustical Society of America》1984,75(4):1177-1183
Estimates of auditory temporal resolution were obtained from normal chinchillas using sinusoidally amplitude modulated noise. Afterwards, the animals were exposed to noise whose bandwidth was progressively increased toward the low frequencies in octave steps. The first exposure was to an octave band of noise centered at 8 kHz. Three additional octave bands of noise were subsequently added to the original exposure in order to progressively increase the extent of the high-frequency hearing loss. The first exposure produced a temporary hearing loss of 50 to 60 dB near 8 kHz and elevated the amplitude modulation thresholds primarily at intermediate (128 Hz) modulation frequencies. Successive noise exposures extended the temporary hearing loss toward lower frequencies, but there was little further deterioration in the amplitude modulation function until the last exposure when the hearing loss spread to 1 kHz. The degradation in the amplitude modulation function observed after the last exposure, however, was due to a reduction in the sensation level of the test signal rather than to a decrease in the hearing bandwidth. The results of this study suggest that the high-frequency regions of the cochlea may be important for temporal resolution. 相似文献
12.
Best V Carlile S Kopco N van Schaik A 《The Journal of the Acoustical Society of America》2011,129(5):EL210-EL215
The ability of listeners with bilateral sensorineural hearing loss to localize a speech source in a multitalker mixture was measured. Five simultaneous words spoken by different talkers were presented over loudspeakers in a small room, and listeners localized one target word. Errors were significantly larger in this group compared to a control group with normal hearing. Localization of the target presented alone was not different between groups. The results suggest that hearing loss does not impair spatial hearing per se, but degrades the spatial representation of multiple simultaneous sounds. 相似文献
13.
Estimates of auditory temporal acuity were obtained from normal chinchillas by measuring their gap-detection thresholds using wideband noise over a range of intensities. Afterwards, the animals were exposed to high-intensity noise whose low-frequency cutoff was progressively lowered towards the low frequencies in five 1-oct steps. The five exposures resulted in a temporary high-frequency hearing loss that progressively spread towards the low frequencies. In addition, there was a systematic and orderly increase in the gap-detection thresholds. These results indicate that gap resolution is strongly dependent on the audibility of the high-frequency energy in the test signal. 相似文献
14.
Identification of vowels in quiet, noise, and reverberation: relationships with age and hearing loss
A K Náb?lek 《The Journal of the Acoustical Society of America》1988,84(2):476-484
Vowel identification in quiet, noise, and reverberation was tested with 40 subjects who varied in age and hearing level. Stimuli were 15 English vowels spoken in a (b-t) context in a carrier sentence, which were degraded by reverberation or noise (a babble of 12 voices). Vowel identification scores were correlated with various measures of hearing loss and with age. The mean of four hearing levels at 0.5, 1, 2, and 4 kHz, termed HTL4, produced the highest correlation coefficients in all three listening conditions. The correlation with age was smaller than with HTL4 and significant only for the degraded vowels. Further analyses were performed for subjects assigned to four groups on the basis of the amount of hearing loss. In noise, performance of all four groups was significantly different, whereas, in both quiet and reverberation, only the group with the greatest hearing loss performed differently from the other groups. The relationship among hearing loss, age, and number and type of errors is discussed in light of acoustic cues available for vowel identification. 相似文献
15.
This study compared the ability of 5 listeners with normal hearing and 12 listeners with moderate to moderately severe sensorineural hearing loss to discriminate complementary two-component complex tones (TCCTs). The TCCTs consist of two pure tone components (f1 and f2) which differ in frequency by delta f (Hz) and in level by delta L (dB). In one of the complementary tones, the level of the component f1 is greater than the level of component f2 by the increment delta L; in the other tone, the level of component f2 exceeds that of component f1 by delta L. Five stimulus conditions were included in this study: fc = 1000 Hz, delta L = 3 dB; fc = 1000 Hz, delta L = 1 dB; fc = 2000 Hz, delta L = 3 dB; fc = 2000 Hz, delta L = 1 dB; and fc = 4000 Hz, delta L = 3 dB. In listeners with normal hearing, discrimination of complementary TCCTs (with a fixed delta L and a variable delta f) is described by an inverted U-shaped psychometric function in which discrimination improves as delta f increases, is (nearly) perfect for a range of delta f's, and then decreases again as delta f increases. In contrast, group psychometric functions for listeners with hearing loss are shifted to the right such that above chance performance occurs at larger values of delta f than in listeners with normal hearing. Group psychometric functions for listeners with hearing loss do not show a decrease in performance at the largest values of delta f included in this study. Decreased TCCT discrimination is evident when listeners with hearing loss are compared to listeners with normal hearing at both equal SPLs and at equal sensation levels. In both groups of listeners, TCCT discrimination is significantly worse at high center frequencies. Results from normal-hearing listeners are generally consistent with a temporal model of TCCT discrimination. Listeners with hearing loss may have deficits in using phase locking in the TCCT discrimination task and so may rely more on place cues in TCCT discrimination. 相似文献
16.
Carlyon RP Mahendran S Deeks JM Long CJ Axon P Baguley D Bleeck S Winter IM 《The Journal of the Acoustical Society of America》2008,123(2):973-985
In the "4-6" condition of experiment 1, normal-hearing (NH) listeners compared the pitch of a bandpass-filtered pulse train, whose inter-pulse intervals (IPIs) alternated between 4 and 6 ms, to that of isochronous pulse trains. Consistent with previous results obtained at a lower signal level, the pitch of the 4-6 stimulus corresponded to that of an isochronous pulse train having a period of 5.7 ms-longer than the mean IPI of 5 ms. In other conditions the IPI alternated between 3.5-5.5 and 4.5-6.5 ms. Experiment 2 was similar but presented electric pulse trains to one channel of a cochlear implant. In both cases, as overall IPI increased, the pitch of the alternating-interval stimulus approached that of an isochronous train having a period equal to the mean IPI. Experiment 3 measured compound action potentials (CAPs) to alternating-interval stimuli in guinea pigs and in NH listeners. The CAPs to pulses occurring after 4-ms intervals were smaller than responses to pulses occurring after 6-ms intervals, resulting in a modulated pattern that was independent of overall level. The results are compared to the predictions of a simple model incorporating auditory-nerve (AN) refractoriness, and where pitch is estimated from first-order intervals in the AN response. 相似文献
17.
P J Fitzgibbons S Gordon-Salant 《The Journal of the Acoustical Society of America》1987,81(1):133-137
Temporal gap resolution was measured in five normal-hearing listeners and five cochlear-impaired listeners, whose sensitivity losses were restricted to the frequency regions above 1000 Hz. The stimuli included a broadband noise and three octave band noises centered at 0.5, 1.0, and 4.0 kHz. Results for the normal-hearing subjects agree with previous findings and reveal that gap resolution improves progressively with an increase in signal frequency. Gap resolution in the impaired listeners was significantly poorer than normal for all signals including those that stimulated frequency regions with normal pure-tone sensitivity. Smallest gap thresholds for the impaired listeners were observed with the broadband signal at high levels. This result agrees with data from other experiments and confirms the importance of high-frequency signal audibility in gap detection. The octave band data reveal that resolution deficits can be quite large within restricted frequency regions, even those with minimal sensitivity loss. 相似文献
18.
This study considered consequences of sensorineural hearing loss in ten listeners. The characterization of individual hearing loss was based on psychoacoustic data addressing audiometric pure-tone sensitivity, cochlear compression, frequency selectivity, temporal resolution, and intensity discrimination. In the experiments it was found that listeners with comparable audiograms can show very different results in the supra-threshold measures. In an attempt to account for the observed individual data, a model of auditory signal processing and perception [Jepsen et al., J. Acoust. Soc. Am. 124, 422-438 (2008)] was used as a framework. The parameters of the cochlear processing stage of the model were adjusted to account for behaviorally estimated individual basilar-membrane input-output functions and the audiogram, from which the amounts of inner hair-cell and outer hair-cell losses were estimated as a function of frequency. All other model parameters were left unchanged. The predictions showed a reasonably good agreement with the measured individual data in the frequency selectivity and forward masking conditions while the variation of intensity discrimination thresholds across listeners was underestimated by the model. The model and the associated parameters for individual hearing-impaired listeners might be useful for investigating effects of individual hearing impairment in more complex conditions, such as speech intelligibility in noise. 相似文献
19.
D Y Chung K Mason R P Gannon G N Willson 《The Journal of the Acoustical Society of America》1983,73(4):1277-1282
Many studies have shown that the right ear statistically is slightly more sensitive than the left ear, particularly in the male adult population. In this study, we examined the lateral difference in hearing sensitivity, termed the ear effect here, in an industrial noise-exposed, nonshooting population, by sex, age, and hearing level. It was found that the male population had a larger ear effect (right ear being more sensitive) than the female population. The magnitude of the ear effect was found to be significantly related to the hearing threshold level. The ear effect was highest when the threshold was between 30- and 40-dB HL. Several possible causes for the ear effect are discussed. 相似文献
20.
Desloge JG Reed CM Braida LD Perez ZD Delhorne LA 《The Journal of the Acoustical Society of America》2011,130(2):915-932
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset. At each of four probe frequencies (500, 1000, 2000, and 4000 Hz), temporal-masking functions were obtained using maskers that were 0.55, 1.0, and 1.15 times the probe frequency. The slopes and y-intercepts of the masking functions were not significantly different for listeners with real and simulated hearing loss. The y-intercepts were positively correlated with level of hearing loss while the slopes were negatively correlated. The ratio of the slopes obtained with the low-frequency maskers relative to the on-frequency maskers was similar for both groups of listeners and indicated a smaller compressive effect than that observed in normal-hearing listeners. 相似文献