首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical study of fluid flow and heat transfer in a two-dimensional channel under fully developed turbulent conditions is reported. A computer program which is capable of treating both forced and natural convection problems under turbulent conditions has been developed. The code uses the high-Reynolds-number form of the two equation turbulent model(k-?) in which a turbulent kinetic energy near-wall model is incorporated in order to accurately represent the behavior of the flow near the wall, particularly in the viscous sublayer where the turbulent Reynolds number is small. A near-wall temperature model has been developed and incorporated into the energy equation to allow accurate prediction of the temperature distribution near the wall and, therefore, accurate calculation of heat transfer coefficients. The sensitivity of the prediction of flow and heat transfer to variations in the coefficients used in the turbulence model is investigated. The predictions of the model are compared to available experimental and theoretical results; good agreement is obtained. The inclusion of the near-wall temperature model has further improved the predictions of the temperature profile and heat transfer coefficient. The results indicate that the turbulent kinetic energy Prandtl number should be a function of Reynolds number.  相似文献   

2.
Using a direct numerical simulation (DNS), a round jet of cryogenic nitrogen, which mimics the experiment by Mayer et. al. (2003) in terms of geometry, thermodynamics, and hydrodynamics, but at reduced Reynolds-Number (Re = 5300 based on the injection diameter), is investigated. The objectives of the present paper are: (1) to reliably predict the turbulence statistics in order to investigate the physical mechanisms, that dominate the flow dynamics, and to investigate the fuel disintegration and mixture formation, (2) to analyze the characteristics of heat transport phenomena of supercritical flows in order to determine parameter regimes advantageous to mixing, and (3) to provide a database for model development and validation that is difficult to obtain experimentally at such extreme thermodynamic conditions.The correctness of the results has been established at two levels. First, a grid-sensitivity study has been carried out to determine the resolution, which provides grid-independent turbulence statistics. This ensures, that the quantities of interest depend only on the physics and are not affected by the numerical methods. Secondly, numerical results have been compared to available experimental data of sub- and supercritical jets. Assuming self-similarity, several characteristics of the jet, like spreading rate, density variations and thermodynamic properties have been assessed.Finally, a comprehensive database including instantaneous flow and temperature fields, mean flow characteristics, turbulence properties along with turbulent kinetic energy budget, and heat flux has been made available. A link to heat flux transport modeling has been established to evaluate the suitability of some existing heat flux models as employed in such supercritical fluid flow.  相似文献   

3.
Double-diffusive natural convection in a fluid saturated porous medium has been investigated using the finite element method. A generalised porous medium model is used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicate that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy regime. The influence of porosity on heat and mass transfer is significant and the transport rates may differ by 25% or more, at higher Darcy and Rayleigh numbers. When compared with the Darcy and other specialised models of Brinkman and Forchheimer, the present generalised model predicts the least heat and mass transfer rates. It is also observed that an increase in radius ratio leads to higher Nusselt and Sherwood numbers along the inner wall.  相似文献   

4.
The present study is devoted to numerical analysis of natural convective heat transfer and fluid flow of alumina-water nanofluid in an inclined wavy-walled cavity under the effect of non-uniform heating. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been included in the mathematical model. The considered governing equations formulated in dimensionless stream function, vorticity, and temperature have been solved by the finite difference method. The cavity inclination angle and irregular walls (wavy and undulation numbers) are very good control parameters for the heat transfer and fluid flow. Nowadays, optimal parameters are necessary for the heat transfer enhancement in different practical applications. The effects of the involved parameters on the streamlines and isotherms as well as on the average Nusselt number and nanofluid flow rate have been analyzed. It has been found that the heat transfer rate and fluid flow rate are non-monotonic functions of the cavity inclination angle and undulation number.  相似文献   

5.
The turbulent flow and heat transfer in triangular rod bundles are investigated theoretically with CFD code FLUENT. The unsteady Reynolds Stress Model is adopted as turbulence modeling. The wall function is used for near wall boundary layer. The calculation results were in agreement with experimental data. The effects of the Reynolds number and pitch to diameter ratio on the flow and heat transfer in the lattice are significant. The traditional theoretical models could not predict the flow and heat transfer in the lattice. The P/D = 1.03 is a critical point. In this case, the flow and heat transfer in the lattice is the most desirable and most efficient, and the nuclear power could also reach its maximum. The variation of large scale coherent structure with pitch to diameter ratio is consistent with the variation of the Nusselt number with pitch to diameter ratio.  相似文献   

6.
Experimental and numerical investigations of turbulent flow and heat transfer have been performed in a concentric annulus between independently rotating tubes. Numerical predictions, applying a Reynolds stress turbulence model, are compared with experimental fluid flow and heat transfer results for the case of a heated outer tube and an adiabatic inner tube. Compared to the above mentioned boundary conditions for the conservation equation of energy, differences in heat transfer in case of a heated inner tube and an adiabatic outer one, are examined by analysis, applying a mixing length turbulence model. Numerical investigations with both kinds of models about the influence of annulus radius ratio make evident that due to different superimpositions of centrifugal force and additional shear stress there is a wide variation of effects on fluid flow and heat transfer caused by the rotation of the inner and the outer tube.  相似文献   

7.
Direct numerical simulation (DNS) results are used to establish the effect of convex streamwise curvature on the development of turbulent boundary layers, and the effect of such curvature on the forced-convection heat transfer variations observed at certain supercritical thermodynamic states. The results illustrate the stabilizing effects of this flow geometry through modification of the structure and distribution of hairpin-like vortical flow structures in the boundary layer. Furthermore, enhancement of convective heat transfer realized at a particular heat flux-to-mass flux ratio with the working fluid at a supercritical state is observed to be reduced by the stabilizing effect of convex surface curvature.  相似文献   

8.
The flow and heat transfer behaviours of fluids at supercritical pressure have been studied using direct numerical simulations (DNS), in which one or more thermal properties are artificially frozen to discern the various physical mechanisms from each other so as to better understand the complex phenomena. Different from previous similar studies on this topic, this study focuses on the axial flow development resulted from the large variations of thermophysical properties. The contribution of the flow inertia has been quantified by analysing the momentum balance for each case studied, which has been found to be significant throughout the entire length of the pipe in cases when buoyancy is considered. The effect of the inertia on momentum in turn impacts on turbulence production, generally delaying flow laminarisation. Such an influence of flow development is non-trivial and cannot be omitted in flow analysis and heat transfer calculations. This suggests that the results of simplified analyses based on a spatially developed flow cannot be directly applied to such flows despite they can be very useful in developing fundamental understanding of the physics. Similarly, this also explains that in some cases, buoyancy parameters based on local flow quantities cannot describe heat transfer deterioration accurately. The effect of variable viscosity alone can cause turbulence reduction by flattening the velocity profile, but it will not turn the velocity profile to an M-shape, which can only be achieved by buoyancy.  相似文献   

9.
A high-order accurate CFD solver, based on the Discontinuous Galerkin (DG) finite element method, is here employed to compute the heat transfer, with and without film coolant injection, around a turbine vane extensively tested in a wind tunnel. The numerical solution makes also use of a high-order polynomial representation of the airfoil curved boundary in order to minimize the numerical sources of error, leaving possibly only those related to the physical model adopted. The objective of the work is therefore twofold: on the one hand to provide a detailed investigation, often beyond the reach of the experiments, of the complex flow field arising in a film-cooled gas turbine cascade, on the other hand to ascertain the limits of the Reynolds-averaged Navier-Stokes (RANS) approach and its associated turbulence model when using high-order accurate methods. The DG formulation is briefly reviewed, as well as the experimental apparatus and the measuring technique, and then the code is applied to the computation of various test cases characterized by different reference Reynolds and Mach numbers. Two-dimensional results (up to seventh-order accurate) obtained both with the high- and low-Reynolds version of the k-ω model employed are presented. Reasonably good agreement between experimental and numerical results is obtained, even though the outcomes are far from being completely satisfactory especially for flow regimes in the low Reynolds number range. This is due to the lack of suitable modeling of the laminar-turbulent transition process taking place around the blade leading edge. Such a complex phenomenon is out of reach of the modeling capabilities of the high-Re k-ω model, while can be roughly mimicked by the low-Re version of the model, which is able to provide a delayed onset of the turbulence quantities along the blade surface.Third-order accurate computation of the three-dimensional turbine vane are also presented in this work and compared with available measurements to investigate the relevant fluid flow phenomena occurring and to discuss significant issues related to an accurate prediction of the turbine wall heat transfer.  相似文献   

10.
Flow through pipes with heat transfer finds wide applications in industry. The thermal stresses, which develop in the pipe limit the heat transfer rate in pipe flow. In the present study, a turbulent flow in thick pipe with external heating is considered. The flow and temperature fields in a pipe and in the fluid are predicted using a numerical scheme; which employs a control volume approach. A k- model is introduced to account for the turbulence. The thermal stresses developed in the pipe due to heat transfer are predicted. The simulations are repeated for different pipe materials and fluids. It is found that the temperature gradient in the pipe changes rapidly in the vicinity of the solid-fluid interface. This change is not affected considerably by the Reynolds number. The effective stress developed at mid-plane of the pipe is independent of the Reynolds number; however, the pipe material affects the effective stress considerably.  相似文献   

11.
Laminar-to-turbulent flow transition in microchannels can be useful to enhance mixing and heat transfer in microsystems. Typically, the small characteristic dimensions of these devices hinder in attaining higher Reynolds numbers to limit the total pressure drop. This is true especially in the presence of a liquid as a working medium. On the contrary, due to lower density, Reynolds number larger than 2000 can be easily reached for gas microflows with an acceptable pressure drop. Since microchannels are used as elementary building blocks of micro heat exchangers and micro heat-sinks, it is essential to predict under which conditions, the laminar-to-turbulent flow transition inside such geometries can be expected. In this paper, experimental validation of a two equations transitional turbulence model, capable of predicting the laminar-to-turbulent flow transition for internal flows as proposed by Abraham etal. (2008), is presented for the first time for microchannels. This is done by employing microchannels in which Nitrogen gas is used as a working fluid. Two different cross-sections namely circular and rectangular are utilized for numerical and experimental investigations. The inlet mass flow rate of the gas is varied to cover all the flow regimes from laminar to fully turbulent flow. Pressure loss experiments are performed for both cross-sectional geometries and friction factor results from experiments and numerical simulations are compared. From the analysis of the friction factor as a function of the Reynolds number, the critical value of the Reynolds number linked to the laminar-to-turbulent transition has been determined. The experimental and numerical critical Reynolds number for all the tested microchannels showed a maximum deviation of less than 12%. These results demonstrate that the transitional turbulence model proposed by Abraham etal. (2008) for internal flows can be extended to microchannels and proficiently employed for the design of micro heat exchangers in presence of gas flows.  相似文献   

12.
Recent developments in the engine heat transfer modeling tend to improve existing wall heat transfer models (temperature wall functions) which mostly rely on the standard or low-Re variants of k-ε turbulence model. Presently applied mesh resolutions already allow for first near-wall computational cells reaching the buffer or locally even viscous/conductive sub-layer, thus increasing the importance of more sophisticated modeling approach. As temperature gradient-induced density and fluid property variations become significant, wall heat transfer is strongly influenced by property variations (viscous/conductive sub-layer) and predictive capability of the turbulence model (buffer region), standard wall laws being inadequate anymore, even for attached boundary layers. The present approach relies on the k-ζ-f turbulence model and formulates a compressible wall function of Han and Reitz in the framework of hybrid wall treatment. The model is validated against spark ignition (SI) engine heat transfer measurements. Predicted wall heat flux evolutions on the cylinder head exhibit very good agreement with the experimental data, being superior to similar numerical predictions available in the published literature.  相似文献   

13.
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in straight ducts using the RNG (Re-Normalized Group) turbulence method.

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts with different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with the RNG κ?ε model and the RNG non-linear κ-ε model of Speziale. The turbulent heat fluxes are modeled by the simple eddy diffusivity (SED) concept, GGDH and WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models arc implemented for an arbitrary three dimensional duct.

Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm. The convective terms are treated by the QUICK, scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the κ and ε equations.

The overall comparison between the models is presented in terms of friction factor and Nusselt number. The secondary flow generation is also of major concern.  相似文献   

14.
Present study numerically and experimentally investigates the turbulent forced convective flow over a heated block mounted on one principal wall of an adiabatic channel. In the computation, thek-?, low-Reynolds-number, two-equation model was adopted for the turbulence closure. In the experiment, the flow measurement was performed by the laser Doppler velocimetry and the mass transfer measurement was carried out via the naphthalene sublimation technique. By virtue of the analogy between heat and mass transfer, the results could then be converted to predict the heat transfer coefficient. The effects of the Reynolds number and the aspect ratio of the block on heat transfer and fluid flow are thoroughly investigated. Distributions of the velocity and the turbulent kinetic energy are presented to gain an insight into the influence of the fluid flow on the heat transfer from the block. The Nusselt number hump is found on every face of the block, which is attributed to the separating bubble there. It is worth noting that the Nusselt number hump is located near the reattachment point of the separating bubble. In the absence of the separating bubble, the Nusselt number decreases or increases monotonously. Comparisons between numerical and experimental results of the local velocity and the heat transfer coefficient show reasonable agreement.  相似文献   

15.
A rotating equilateral triangular cooling channel with staggered square ribs inside the leading edge of a turbine blade has been optimized in this work based on surrogate modeling. The fluid flow and heat transfer in the channel have been analyzed using three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations under uniform heat flux condition. Shear stress transport turbulence model has been used as a turbulence closure. Computational results for area-averaged Nusselt number have been validated compared to the experimental data. The objectives related to the heat transfer rate and pressure drop has been linearly combined with a weighting factor to define the objective function. The angle of the rib, the rib pitch-to-hydraulic diameter ratio, and the rib width-to-hydraulic diameter ratio have been selected as the design variables. Twenty-two design points have been generated by Latin Hypercube sampling, and the values of the objective function have been calculated by the RANS analysis at these points. The surrogate model for the objective function has been constructed using the radial basis neural network method. Through the optimization, the objective function value has been improved by 21.5 % compared to that of the reference geometry.  相似文献   

16.
17.
This paper reports the numerical modeling of turbulent flow and convective heat transfer over a wavy wall using a two equations eddy viscosity turbulence model. The wall boundary conditions were applied by using a new zonal modeling strategy based on DNS data and combining the standard k– turbulence model in the outer core flow with a one equation model to resolve the near-wall region.It was found that the two-layer model is successful in capturing most of the important physical features of a turbulent flow over a wavy wall with reasonable amount of memory storage and computer time. The predicted results show the shortcomings of the standard law of the wall for predicting such type of flows and consequently suggest that direct integrations to the wall must be used instead. Moreover, Comparison of the predicted results of a wavy wall with that of a straight channel, indicates that the averaged Nusselt number increases until a critical value is reached where the amplitude wave is increased. However, this heat transfer enhancement is accompanied by an increase in the pressure drop.  相似文献   

18.
The results of the numerical modeling of flow structure, turbulence, and heat transfer in a gas-droplet stream after sudden tube expansion on the basis of the Eulerian approach are presented. The gas phase turbulence was modeled using the Reynolds stress transfer model modified to allow for the presence of particles. The results are compared with those obtained using the two-equation k-ε model. The latter results overestimate the heat transfer in the separation flow as compared with the Reynolds stress transfer model. The heat transfer is shown to considerably increase, when evaporating droplets are incorporated in the separation flow (by a factor of more than 1.5 compared with the case of a single-phase flow at a small mass concentration of the droplets M L1 ≤ 0.05). The addition of the disperse phase in the turbulent gas flow leads a slight increase in the recirculation zone length. Good agreement with the experimental data indicates the adequacy of the numerical model developed.  相似文献   

19.
In this study, Darcy Forchheimer flow paradigm, which is a useful paradigm in fields such as petroleum engineering where high flow velocity effects are common, has been analyzed with artificial intelligence approach. In this context, first of all, Darcy–Forchheimer flow of Ree–Eyring fluid along a permeable stretching surface with convective boundary conditions has been examined and heat and mass transfer mechanisms have been investigated by including the effect of chemical process, heat generation/absorption, and activation energy. Cattaneo–Christov heat flux model has been used to analyze heat transfer properties. Within the scope of optimizing Darcy–Forchheimer flow of Ree–Eyring fluid; three different artificial neural network models have been developed to predict Nusselt number, Sherwood number, and skin friction coefficient values. The developed artificial neural network model has been able to predict Nusselt number, Sherwood number, and skin friction coefficient values with high accuracy. The findings obtained as a result of the study showed that artificial neural networks are an ideal tool that can be used to model Darcy–Forchheimer Ree–Eyring fluid flow towards a permeable stretch layer with activation energy and a convective boundary condition.  相似文献   

20.
In this presentation, influences of axial vane swirler on heat transfer augmentation and fluid flow are investigated both experimentally and numerically. The swirl generator is installed at the inlet of the annular duct to generate decaying swirling pipe flow. Three different blade angels of 30°, 45° and 60° were examined. Meanwhile, flow rate was adjusted at Reynolds numbers ranging from 10000 to 30000. Study has been done under uniform heat flux condition and air was used as working fluid. Experimental results confirm that the use of vane swirler leads to a higher heat transfer compared with those obtained from plain tubes. Depending on blade angle, overall Nusselt augmentation is found from 50% to 110% while friction factor increases by the range of 90–500%. Thermal Performance evaluation has been done for test section and test section together with swirler. In both cases, thermal performance increases as vane angle is raised and decreases by growth of Re number. When increasing the blade angle, higher decay rate has been observed for local Nusselt number. In CFD analysis, time-averaged governing equations were solved numerically and RSM model was applied as the turbulence model. Here, the simulation results of axial and tangential velocities, turbulent kinetic energy, wall stresses and swirl intensity are provided. They illustrate the effect of swirling pattern on mean flow and turbulence structure, as well as on improving heat transfer enhancement in the annular duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号