首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
燃烧场参数的激光诊断技术研究   总被引:6,自引:5,他引:6       下载免费PDF全文
 介绍了燃烧场参数的激光诊断技术的研究进展,给出了用自发拉曼散射、激光诱导荧光、相干反斯托克斯拉曼散射法诊断燃烧场温度和组分的实验系统和部分实验结果,单次测量火焰的温度和组分浓度相对误差小于10%;利用平面激光诱导荧光技术获得了稳定燃烧场二维OH荧光图像,并分析了激光作用区域火焰二维温度场的分布。  相似文献   

2.
Gradual substitution of coal with green ammonia is a practical approach for the coal power phasedown at a minimal cost of modification, but the ignition and gas-phase reaction during co-firing NH3 with coal remain largely unclear. In this work, we investigate the co-combustion behaviors of NH3 and a high-volatile coal on a two-stage flat flame burner. Remarkably, the post-flame oxygen mole fraction Xi,O2 of the inner stage can be manipulated to reproduce a proper reducing-to-oxidizing environment that coal particles experience in the practical combustor. We first reveal that, under certain values of Xi,O2 and NH3 co-firing energy ratios ENH3, the reaction intensity (manifested by OH-PLIF signals) in the NH3-coal flame is stronger than burning either pure coal or NH3. This synergetic effect originates from an NH3-combustion-induced enhancement of volatile release. We then propose a characteristic time scale τOH from the OH signals for the initiation of overall reactions in the system. In the case of Xi,O2=0, τOH monotonically increases with ENH3, while for Xi,O2=0.2, the trend transitions to a decreasing one. It can be interpreted by comparing τOH with the characteristic O2 diffusion time, coal particle heating time, and the coal pyrolysis time under different Xi,O2. Furthermore, the coal particle ignition in coal-NH3 flames can no longer be determined by visual images. Instead, we apply CH* chemiluminescence to identify the stages of coal particle ignition and volatile combustion in the NH3-coal flame. While NH3 addition has both positive (elevating temperatures & diluting coal particles) and negative (consuming O2) effects on coal ignition, the combined influence of ENH3 is marginal on coal ignition delay time. On the other hand, the volatile combustion time decreases linearly with ENH3, suggesting a pure effect of reduced coal feed rate.  相似文献   

3.
介绍了燃烧场参数的激光诊断技术的研究进展,给出了用自发拉曼散射、激光诱导荧光、相干反斯托克斯拉曼散射法诊断燃烧场温度和组分的实验系统和部分实验结果,单次测量火焰的温度和组分浓度相对误差小于10%;利用平面激光诱导荧光技术获得了稳定燃烧场二维OH荧光图像,并分析了激光作用区域火焰二维温度场的分布。  相似文献   

4.
Extinction limits and flame bifurcation of lean premixed dimethyl ether–air flames are numerically investigated using the counterflow flame with a reduced chemistry. Emphasis is paid to the combined effect of radiation and flame stretch on the extinction and flammability limits. A method based on the reaction front is presented to predict the Markstein length. The predicted positive Markstein length agrees well with the experimental data. The results show that flow stretch significantly reduces the flame speed and narrows the flammability limit of the stretched dimethyl ether–air flame. It is found that the combined effect of radiation and flow stretch results in a new flame bifurcation and multiple flame regimes. At an equivalence ratio slightly higher than the flammability limit of the planar flame, the distant flame regime appears at low stretch rates. With an increase in the equivalence ratio, in addition to the distant flame, a weak flame isola emerges at moderate stretch rates. With a further increase in the equivalence ratio, the distant flame and the weak flame branches merge together, resulting in the splitting of the weak flame branch into two weak flame branches, one at low stretch and the other at high stretch. Flame stability analysis demonstrates that the high stretch weak flame is also stable. Furthermore, a K-shaped flammability limit diagram showing various flame regimes and their extinction limits is obtained.  相似文献   

5.
Ignition delay times and OH concentration time-histories were measured in DME/O2/Ar mixtures behind reflected shock waves. Initial reflected shock conditions covered temperatures (T5) from 1175 to 1900 K, pressures (P5) from 1.6 to 6.6 bar, and equivalence ratios (?) from 0.5 to 3.0. Ignition delay times were measured by collecting OH emission near 307 nm, while OH time-histories were measured using laser absorption of the R1(5) line of the A-X(0,0) transition at 306.7 nm. The ignition delay times extended the available experimental database of DME to a greater range of equivalence ratios and pressures. Measured ignition delay times were compared to simulations based on DME oxidation mechanisms by Fischer et al. [7] and Zhao et al. [9]. Both mechanisms predict the magnitude of ignition delay times well. OH time-histories were also compared to simulations based on both mechanisms. Despite predicting ignition delay times well, neither mechanism agrees with the measured OH time-histories. OH Sensitivity analysis was applied and the reactions DME ↔ CH3O + CH3 and H + O2 ↔ OH + O were found to be most important. Previous measurements of DME ↔ CH3O + CH3 are not available above 1220 K, so the rate was directly measured in this work using the OH diagnostic. The rate expression k[1/s] =  1.61 × 1079T−18.4 exp(−58600/T), valid at pressures near 1.5 bar, was inferred based on previous pyrolysis measurements and the current study. This rate accurately describes a broad range of experimental work at temperatures from 680 to 1750 K, but is most accurate near the temperature range of the study, 1350-1750 K. When this rate is used in both the Fischer et al. and Zhao et al. mechanisms, agreement between measured OH and the model predictions is significantly improved at all temperatures.  相似文献   

6.
The Large Eddy Simulation (LES) / Conditional Moment Closure (CMC) model with detailed chemistry is used for modelling spark ignition and flame propagation in a turbulent methane jet in ambient air. Two centerline and one off-axis ignition locations are simulated. We focus on predicting the flame kernel formation, flame edge propagation and stabilization. The current LES/CMC computations capture the three stages reasonably well compared to available experimental data. Regarding the formation of flame kernel, it is found that the convection dominates the propagation of its downstream edge. The simulated initial downstream and radial flame propagation compare well with OH-PLIF images from the experiment. Additionally, when the spark is deposited at off-centerline locations, the flame first propagates downstream and then back upstream from the other side of the stoichiometric iso-surface. At the leading edge location, the chemical source term is larger than others in magnitude, indicating its role in the flame propagation. The time evolution of flame edge position and the final lift-off height are compared with measurements and generally good agreement is observed. The conditional quantities at the stabilization point reflect a balance between chemistry and micro-mixing. This investigation, which focused on model validation for various stages of spark ignition of a turbulent lifted jet flame through comparison with measurements, demonstrates that turbulent edge flame propagation in non-premixed systems can be reasonably well captured by LES/CMC.  相似文献   

7.
This work investigates the use of laser-induced gas breakdown for simultaneously igniting and measuring fuel-to-air ratio of CH4–air and H2–air combustible mixtures. The fuel-to-air ratio is determined using the measured spectral peak ratio Io,Hα/Io,OI. Sparks are produced using a single-mode, Q-switched Nd–YAG laser. The laser produces a beam of 6 mm in diameter at the wavelength of 1064 nm and pulse duration of 5.5 ns. The beam optics is designed to have mainly a beam splitter and a focusing lens. The beam splitter is coated to reflect the laser beam and transmit emission lines with wavelengths from 600 to 900 nm which are then collected by a fiberoptic cable and detected by an imaging spectrometer–detector assembly. The results showed a linear dependence of the spectral peak ratio on the equivalence ratio that can be generally expressed by φ=a(Io,Hα/Io,OI)+b, where a and b are the parameters that depend on the gas pressure. Using the least-square curve fitting technique to fit the experimental data, a calibration curve for calculating the equivalence ratio as a function of the ratio of (Io,Hα/Io,OI) was generated.  相似文献   

8.
The combustion chemistry of the first stage ignition and chemistry/flow interactions are studied for dimethyl ether (DME) with a mathematical analysis of two systems: a plug flow reactor study is used to reduce the reaction chemistry systematically. A skeletal reaction mechanism for the low temperature chemistry of DME until the onset of ignition is derived on the basis of the detailed DME mechanism of the Lawrence Livermore National Laboratory – see Curran, Fischer and Dryer, Int. J. Chem. Kinetics, Vol. 32 (2000). It is shown that reasonably good results for ignition delay times can be reached using a simple system of three ordinary differential equations and that the resulting analytical solution depends only on two reaction rates and the initial fuel concentration. The stepwise reduction of the system based on assumptions yields an understanding on why these reactions are so important. Furthermore, the validation of the assumptions yields insight into the influence of the fuel and the oxygen concentration on the temperature during the induction phase. To investigate the influence of chemistry/flow interactions, a 2D model with a laminar Hagen–Poiseuille flow and 2D-polynomial profiles for the radial species concentration is considered. For the 2D model, it is found that only the diffusion coefficients and the reactor radius need to be taken into consideration additionally to describe the system sufficiently. Also, the coupling of flow and chemistry is clarified in the mathematical analysis. The insight obtained from the comparison of the 2D model and the plug flow model is used to establish an average velocity for the conversion of ignition locations to ignition delay times in a laminar flow reactor. Finally, the 2D analytical solution is compared against new experimental data, obtained in such a laminar flow reactor for an undiluted DME/air mixture with an equivalence ratio of φ = 0.835 and a temperature range of 555 to 585 K at atmospheric pressure.  相似文献   

9.
This paper presents a joint numerical and experimental study of the ignition process and flame structures in a gasoline partially premixed combustion (PPC) engine. The numerical simulation is based on a five-dimension Flamelet-Generated Manifold (5D-FGM) tabulation approach and large eddy simulation (LES). The spray and combustion process in an optical PPC engine fueled with a primary reference fuel (70% iso-octane, 30% n-heptane by volume) are investigated using the combustion model along with laser diagnostic experiments. Different combustion modes, as well as the dominant chemical species and elementary reactions involved in the PPC engines, are identified and visualized using Chemical Explosive Mode Analysis (CEMA). The results from the LES-FGM model agree well with the experiments regarding the onset of ignition, peak heat release rate and in-cylinder pressure. The LES-FGM model performs even better than a finite-rate chemistry model that integrates the full-set of chemical kinetic mechanism in the simulation, given that the FGM model is computationally more efficient. The results show that the ignition mode plays a dominant role in the entire combustion process. The diffusion flame mode is identified in a thin layer between the ultra fuel-lean unburned mixture and the hot burned gas region that contains combustion intermediates such as CO. The diffusion flame mode contributes to a maximum of 27% of the total heat release in the later stage of combustion, and it becomes vital for the oxidation of relatively fuel-lean mixtures.  相似文献   

10.
11.
A well-defined plasma assisted combustion system with novel in situ discharge in a counterflow diffusion flame was developed to study the direct coupling kinetic effect of non-equilibrium plasma on flame ignition and extinction. A uniform discharge was generated between the burner nozzles by placing porous metal electrodes at the nozzle exits. The ignition and extinction characteristics of CH4/O2/He diffusion flames were investigated by measuring excited OH1 and OH PLIF, at constant strain rates and O2 mole fraction on the oxidizer side while changing the fuel mole fraction. It was found that ignition and extinction occurred with an abrupt change of OH1 emission intensity at lower O2 mole fraction, indicating the existence of the conventional ignition-extinction S-curve. However, at a higher O2 mole fraction, it was found that the in situ discharge could significantly modify the characteristics of ignition and extinction and create a new monotonic and fully stretched ignition S-curve. The transition from the conventional S-curves to a new stretched ignition curve indicated clearly that the active species generated by the plasma could change the chemical kinetic pathways of fuel oxidation at low temperature, thus resulting in the transition of flame stabilization mechanism from extinction-controlled to ignition-controlled regimes. The temperature and OH radical distributions were measured experimentally by the Rayleigh scattering technique and PLIF technique, respectively, and were compared with modeling. The results showed that the local maximum temperature in the reaction zone, where the ignition occurred, could be as low as 900 K. The chemical kinetic model for the plasma–flame interaction has been developed based on the assumption of constant electric field strength in the bulk plasma region. The reaction pathways analysis further revealed that atomic oxygen generated by the discharge was critical to controlling the radical production and promoting the chain branching effect in the reaction zone for low temperature ignition enhancement.  相似文献   

12.
介绍了用单脉冲BOXCARS技术测量含铝固体燃剂燃烧场的温度及氮气的浓度。分析了激光光束质量对CARS信号强度的影响,给出了在燃烧场中取得的单脉冲CARS光谱,并进行了理论拟合,得到了燃烧场的温度及组份浓度数据。在燃烧场中心高5mm处温度值约为2550K,氮气浓度平均为25.5%。测量了燃烧场中不同高度处CARS光谱,给出了燃烧场温度、氮气浓度随高度变化的曲线,对结果进行了分析。  相似文献   

13.
<正>Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density,i.e.,E* = 4.3×1012 J/m2,has been reached.Recently,fast ignition by employing clean petawatt-picosecond laser pulses was performed.The anomalous phenomena were observed to be based on suppression of prepulses.The accelerated plasma block was used to ignite deuterium-tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated.Also the fusion conditions at x≠0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition.In this paper,the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks,thermonuclear reaction,heat transfer, electron-ion equilibration,stopping power of alpha particles,bremsstrahlung,expansion,density dependence,and fluid dynamics.New ignition conditions may be obtained by using temperature equations,including the density profile that is obtained by the continuity equation and expansion velocity.The density is only a function of x and independent of time.The ignition energy flux density,Et*,for the x≠0 layers is 1.95×1012 J/m2.Thus threshold ignition energy in comparison with that at x = 0 layers would be reduced to less than 50 percent.  相似文献   

14.
This paper deals with plasma polymerization processes of diethylene glycol dimethyl ether. Plasmas were produced at 150 mtorr in the range of 10 W to 40 W of RF power. Films were grown on silicon and quartz substrates. Molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy. The IR spectra show C–H stretching at 3000–2900 cm-1, C=O stretching at 1730–1650 cm-1, C–H bending at 1440–1380 cm-1, C–O and C–O–C stretching at 1200–1000 cm-1. The concentrations of C–H, C–O and C–O–C were investigated for different values of RF power. It can be seen that the C–H concentration increases from 0.55 to 1.0 au (arbitrary unit) with the increase of RF power from 10 to 40 W. The concentration of C–O and C–O–C decreases from 1.0 to 0.5 au in the same range of RF power. The refraction index increased from 1.47 to 1.61 with the increase of RF power. The optical gap calculated from absorption coefficient decreased from 5.15 to 3.35 eV with the increase of power. Due to its optical and hydrophilic characteristics these films can be applied, for instance, as glass lens coatings for ophthalmic applications.  相似文献   

15.
This study investigates the effects of curvature on the local heat release rate and mixture fraction during turbulent flame-wall interaction of a lean dimethyl ether/air flame using a fully resolved simulation with a reduced skeletal chemical reaction mechanism and mixture-averaged transport. The region in which turbulent flame-wall interaction affects the flame is found to be restricted to a wall distance less than twice the laminar flame thickness. In regions without heat losses, heat release rate and curvature, as well as mixture fraction and curvature, are negatively correlated, which is in accordance with experimental findings. Flame-wall interaction alters the correlation between heat release rate and curvature. An inversion in the sign of the correlation from negative to positive is observed as the flame starts to experience heat losses to the wall. The correlation between mixture fraction and curvature, however, is unaffected by flame-wall interactions and remains negative. Similarly to experimental findings, the investigated turbulent side-wall quenching flame shows both head-on quenching and side-wall quenching-like behavior. The different quenching events are associated with different curvature values in the near-wall region. Furthermore, for medium heat loss, the correlations between heat release rate and curvature are sensitive to the quenching scenario.  相似文献   

16.
Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected. The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.  相似文献   

17.
Pd/HZSM-5 catalysts prepared via glow discharge plasma reduction followed by calcination thermally show excellent enhanced stability for methane combustion. EXAFS characterization confirms that argon glow discharge reduces Pd/HZSM-5 catalyst effectively at close to room temperature. After thermal calcination of argon plasma reduced Pd/HZSM-5 catalyst under air, specific tetragonal PdO species are formed. This kind of active PdO species keeps stable during methane combustion, which leads to the observed excellent stability of plasma prepared Pd/HZSM-5 catalyst. EXAFS characterization also shows argon plasma reduction can help to remove Cl, which has a negative effect on catalysts properties.  相似文献   

18.
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.  相似文献   

19.
The ionization potentials for core electrons in dimethyl ether and methyl amine have been measured. For carbon 1s electrons the values are 292.25(4) eV for the ether and 291.60(4) eV for the amine. The nitrogen 1s ionization potential is 405.15(4) eV; that for oxygen is 538.59(4) eV. The two ionization potentials for the ether are very close to those that have been reported for the related compound methanol. Those for methyl amine reflect the fact that nitrogen is more electro-negative than carbon. The carbon 1s ionization potential in methyl amine together with the equivalent cores approximation gives an estimate of 169 kcal/mole for the heat of formation of N2H5+. The corresponding proton affinity for hydrazine is 221 kcal/mole, very close to that of ammonia, 214 kcal/mole. The large shifts of nitrogen and oxygen core ionization potentials relative to N2 and O2 may be due to unusually low relaxation energies for the diatomic molecules rather than to high negative charges on the atoms in the respective compounds. Since different methods for estimating relaxation energies give results differing by as much as 6 eV, it is not possible to say which is the more important effect.  相似文献   

20.
The ignition and combustion processes of transient turbulent methane jets under high-pressure and moderate temperature conditions were simulated using a computationally efficient combustion model. Closure for the mean chemical source-terms was obtained with Conditional Source-term Estimation (CSE) using first conditional moment closure in conjunction with a detailed chemical kinetic mechanism, which was reduced to a Trajectory-Generated Low-Dimensional Manifold (TGLDM). The accuracy of the manifold was first validated against the direct integral method by comparing the predicted reactive scalar profiles in three methane–air reaction systems: a laminar premixed flame, a laminar flamelet and a perfectly stirred reactor. Detailed CFD simulations incorporating the CSE-TGLDM model were able to provide reasonably good predictions of the experimental ignition delay and initial ignition kernel locations of the methane jets reported in the literature with relatively low computational cost. Nitrogen oxides formed in the methane jet flame were found to be underpredicted by the model by as much as a factor of 2. The discrepancy may be attributable to the inability of the simulation to account for the effects of the rarefaction wave in the shock-tube experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号