首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Suspension polymerization yielded microspheres (40–50 μm) of polyacrolein. Smooth and rugged surfaces can be created by varying the polymerization procedure. We have shown that the polyacrolein resins with a high loading of aldehyde groups serve as effective scavengers for primary amines and may be used to remove compounds bearing amino groups in the combinatorial synthesis of compound libraries. Copolymerization with styrene can help to separate the adjacent aldehyde groups, thus making the functional groups more available in organic reactions. The polyacrolein resins in the aldehyde form or after appropriate chemical modifications may also be useful as support materials in solid‐phase synthesis.

The SEM image of macroporous polyacrolein microspheres with toluene as porogen prepared by free radical polymerization.  相似文献   


2.
Depending on the method of deposition, reactive sites of polysaccharides on substrates may not be available when their reducing ends have been used to covalently bind them to the substrates. Here we present a method that allows surface density measurements of reducing-end covalently bound polysaccharides in a procedure that cleaves the polysaccharide chain from the surface via hydrazinolysis and deamination, leaving on the surface a disaccharide that is later radiolabeled with an aldehyde in a reaction with enamine formation. The method described has the advantage that it may be used with any polysaccharide patterned to any surface exposing an amino-terminated monolayer by reductive amination of their galactosamine or glucosamine repeating units. We illustrate the technique with the quantitation of glycosaminoglycans (GAGs) on silanized glass surfaces.  相似文献   

3.
The study below details the synthesis and self-assembly of new cruciform pi-systems and their in situ chemical reactions in monolayer films. Analysis of the packing in the crystal structure of one of these unusually shaped molecules reveals that the terphenyl arm, which is twisted out of conjugation, makes edge-to-face contact with neighboring molecules aligning the conjugated bisoxazole arms in rows. In self-assembled monolayers on metal surfaces, these cruciform pi-systems present reactive groups at the film/air interface. Films that present aldehyde functionality react with aromatic anilines to give surface-bound imines. Dimers that are >4.5 nm in length and contain a conjugated imine linkage can be made in situ on gold substrates through this strategy.  相似文献   

4.
A new method for providing polymeric microspheres with aldehyde functional groups capable of covalent reaction with proteins is described. Benzyl halide groups on small molecules, polymeric resins, and the surfaces of surfactant-free poly(styrene-co-chloromethylstyrene) were converted to benzaldehyde groups by oxidation with 2-nitropropane in aqueous sodium methoxide. The modified microspheres containing aldehyde groups can be reacted with protein under milder conditions than the parent microspheres. The activity of a monoclonal antibody, Phe 1.9, was higher when it was immobilized on the aldehyde-containing beads than following immobilization on the parent beads.  相似文献   

5.
Silicon substrates coated with a long-chain hydrocarbon monolayer terminated by carboxylic acid ester groups were brought into molecular contact with different solid counter surfaces ranging from inert hydrocarbon surfaces to hydrophilic oxide surfaces. The interaction of the terminal ester groups with the counter surface was probed with infrared spectroscopy. Interfacial hydrogen bonds are reversibly formed upon contact formation, and the total degree of bonding can be adjusted by variation of the hydroxyl group density of the counter surface and quantified from the monolayer IR spectra.  相似文献   

6.
We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An aldehyde-terminated monolayer on glass or on gold was obtained by the reaction between an amino-terminated monolayer and terephthaldialdehyde. The aldehyde monolayer was employed as a substrate for the direct microcontact printing of bioengineered, collagen-like proteins by using an oxidized poly(dimethylsiloxane) (PDMS) stamp. After immobilization of the proteins into adhesive "islands", the remaining areas were blocked with amino-poly(ethylene glycol), which forms a layer that is resistant to cell adhesion. Human malignant carcinoma (HeLa) cells were seeded and incubated onto the patterned substrate. It was found that these cells adhere to and spread selectively on the protein islands, and avoid the poly(ethylene glycol) (PEG) zones. These findings illustrate the importance of microcontact printing as a method for positioning proteins at surfaces and demonstrate the scope of controlled surface chemistry to direct cell adhesion.  相似文献   

7.
A fullerene derivative 10 with a terminal thiol group dissolves easily in common organic solvents and forms a densely packed self-assembled monolayer on gold surfaces. The functionalization of C(60) is based on the 1,3-dipolar cycloaddition of the azomethine ylide generated in situ from the corresponding aldehyde and N-methylglycine. The monolayers were characterized by grazing angle reflectance FTIR spectroscopy, scan tunneling microscopy, and cyclic voltammetry. The cyclic voltammogram of a SAM of 10 showed two well-resolved reversible cathodic waves corresponding to the first two one-electron reductions of the fullerene fragment.  相似文献   

8.
Aliphatic alcohols and aldehydes were reacted with the Si(111)-H surface to form Si-O-C interfacial bonds from dilute solution by using ultraviolet light. The resulting monolayers were characterized by using transmission infrared spectroscopy, spectroscopic ellipsometry, and contact angle measurements. The effect of different solvents on monolayer quality is presented. The best monolayers were formed from CH(2)Cl(2). The optimized monolayers were thoroughly characterized to determine the film structure and monolayer stability. The UV-promoted, alcohol-functionalized, and aldehyde-functionalized monolayers are of comparable quality to those previously prepared by other means. Although both molecules are tethered through a Si-O-C bond, the film reactivity is distinctly different with the aldehyde films being more chemically resistant. The differences in chemical reactivity, vibrational spectra, hydrophobicity, and ellipsometric thickness between the alcohol and aldehyde monolayers are attributed to a difference in molecular coverage and monolayer formation.  相似文献   

9.
Studies of wetting and stability of mixed monolayers containing hydrophobie and hydrophilic components are discussed. We are reporting the observation of an apparent concentration-driven transition in the cosine of the contact angles of liquids on mixed monolayers. It is suggested that this phenomenon is due to a possible (true or rounded) surface phase transition, resulting in the formation of a prewetting water layer. This formation is triggered by variations in the quenched distribution of random surface fields. The variation of the surface free-energy, both polar and dispersive parts, has been determined as a function of surface OH-concentration. The surface free-energy of the 100% OH surface is close to that found for water, as might be expected for a surface coated with several monolayers of water. Zisman plots obtained for several of the surfaces using polar and nonpolar liquids give γc values which follow the observed dispersive contribution to the total surface free energy, and thus do not present a good approximation to the surface free energy (i.e., γc < γsv).Contact angle variation was studied on self-assembled alkanethiol monolayers containing mixtures of OH and CH3 groups at their air-monolayer interface. It was found that these high free energy organic surfaces yielded contact angles which were not stable over long periods of time. The extent of the variation was found to be related to the surface free energy (%OH). The effect of different storage environments and temperature on the changing contact angles are discussed. We propose that monolayer surfaces containing high concentrations of OH groups on mobile organic chains are not stable. Such monolayer surfaces may stabilize over time, depending on the chain length, by surface reorganization and the adsorption of contaminants.  相似文献   

10.
This article describes a simple method for the generation of multicomponent gradient surfaces on self‐assembled monolayers (SAMs) on gold in a precise and predictable manner, by harnessing a chemical reaction on the monolayer, and their applications. A quinone derivative on a monolayer was converted to an amine through spontaneous intramolecular cyclization following first‐order reaction kinetics. An amine gradient on the surface on a scale of centimeters was realized by modulating the exposure time of the quinone‐presenting monolayer to the chemical reagent. The resulting amine was used as a chemical handle to attach various molecules to the monolayer with formation of multicomponent gradient surfaces. The effectiveness of this strategy was verified by cyclic voltammetry (CV), matrix assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (MS), MS imaging, and contact‐angle measurements. As a practical application, cell adhesion was investigated on RGD/PHSRN peptide/peptide gradient surfaces. Peptide PHSRN was found to synergistically enhance cell adhesion at the position where these two ligands are presented in equal amounts, while these peptide ligands were competitively involved in cell adhesion at other positions. This strategy of generating a gradient may be further expandable to the development of functional gradient surfaces of various molecules and materials, such as DNA, proteins, growth factors, and nanoparticles, and could therefore be useful in many fields of research and practical applications.  相似文献   

11.
A general mechanism for the oxygen-assisted synthesis of amides over metallic gold and silver surfaces has been derived from the study of acetaldehyde and dimethylamine in combination with previous work, allowing detailed comparison of the two surfaces' reactivities. Facile acetylation of dimethylamine by acetaldehyde occurs with high selectivity on oxygen-covered silver and gold (111) crystals via a common overall mechanism with different rate-limiting steps on the two metals. Adsorbed atomic oxygen activates the N-H bond of the amine leading to the formation of an adsorbed amide, which attacks the carbonyl carbon of the aldehyde, forming an adsorbed hemiaminal. Because aldehydes are known to form readily from partial oxidation of alcohols, our mechanism also provides insight into the related catalytic coupling of alcohols and amines. The hemiaminal β-H eliminates to form the coupled amide product. On silver, β-H elimination from the hemiaminal is rate-limiting, whereas on gold desorption of the amide is the slow step. Silver exhibits high selectivity for the coupling reaction for adsorbed oxygen concentrations between 0.01 and 0.1 monolayer, whereas gold exhibits selectivity more strongly dependent on oxygen coverage, approaching 100% at 0.03 monolayer. The selectivity trends and difference in rate-limiting steps are likely due to the influence of the relative stability of the adsorbed hydroxyl groups on the two surfaces. Low surface coverages of oxygen lead to the highest selectivity. This study provides a general framework for the oxygen-assisted coupling of alcohols and aldehydes with amines over gold- and silver-based catalysts in either the vapor or the liquid phase.  相似文献   

12.
In the present study, oligo(ethylene glycol) (OEG)-linked alkanethiols were synthesized which carry a vicinal diol on one end of the OEG chain. After self-assembled monolayer (SAM) formation on gold, the vicinal diols were converted into aldehyde functions by exposure to aqueous NaIO4, as previously used for SAMs with OEG chains buried in the center of the SAM [Jang et al. Nano Lett. 2003, 3, 691-694]. Mixed SAMs with latent aldehydes on 5% of the OEG termini showed high protein resistance, which greatly slowed the kinetics of protein coupling on the time scale of minutes. Small bioligands (such as biocytin hydrazide) or small heterobifunctional crosslinkers (maleimidopropionyl hydrazide, pyridyldithiopropionyl hydrazide) with hydrazide functions were efficiently bound to the aldehyde functions on the SAM, providing for specific capture of streptavidin or for fast covalent binding of proteins with free thiols or maleimide functions, respectively. In conclusion, OEG-terminated SAMs with latent aldehydes serve as protein-resistant sensor surfaces which are easily functionalized with small ligands or with heterobifunctional crosslinkers to which the bait molecule is attached in a subsequent step.  相似文献   

13.
A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.  相似文献   

14.
FLOSS (fluorescence labeling of surface species) enables one to identify and quantify very low concentrations of surface functional groups. Unlike most surface analytical techniques, FLOSS can provide absolute, as well as relative, surface coverage determination. However, as with any other surface derivatization technique, FLOSS provides a lower limit to surface coverage. The specificity of FLOSS for a particular functional group is the key to this application. In one FLOSS protocol, amine-modified dyes are used to label surface aldehyde groups. However, amine-modified dyes, in principle, can bind to both aldehyde and carboxyl groups, limiting specificity. In this paper, we report that the FLOSS protocol devised results in less than 0.5 % of the carboxyl-modified dyes binding to the surface amine groups. Therefore, the presence of carboxyl groups on the surface should have a limited effect on the detection of aldehyde groups by amine-modified dye. Quenching of fluorescence can potentially affect quantitative measurements. To address this issue, the densities of surface functional groups of CHO-, NH2-, and epoxy-coated glass surfaces were quantified using FLOSS and compared to surface densities estimated by other methods. The FLOSS technique was extended to glass surfaces by using visible absorbing and emitting dyes. The lower detection limit is on the order of 10(9) groups/cm2.  相似文献   

15.
This article describes a variety of monolayers anchored directly onto silicon surfaces without an oxide interlayer, their formation mechanisms, their technological applications, and our personal views on the future prospects for this field. The chemical modification of non-oxidized silicon surfaces utilizing monolayers was first reported in 1993. The basic finding that a non-oxidized silicon surface could be neutralized with alkyl chains through direct covalent linkage, i.e., silicon-carbon, has offered chemical scientists ease of handling even in an ambient environment and, thus, research has been predictably focused on forming anti-stiction coating films for nano- and micro-electromechanical systems (NEMS/MEMS). Such surface reforming has also been achieved by using other monolayers, which form interfacial bonds, e.g., silicon-nitrogen and silicon-oxygen. The resultant monolayer surfaces are useful for silicon-based applications including molecular electron transfer films, monolayer templates, molecular insulators, capsulators, and bioderivatives. Such monolayers are applicable not only for surface modification, but also for manipulating individual nanomaterials. By modifying the terminal groups of monolayers with nanomaterials including nanocrystals and biomolecules, the nanomaterials can remarkably be immobilized directly onto non-oxidized silicon surfaces based on the formation mechanisms of the monolayer. Such immobilizations will revolutionize the analysis of the specific features and capabilities of individual nanomaterials. Furthermore, the path will be opened for the development of more advanced monolayer-derived chip technology. To achieve this goal, it is extremely important to thoroughly understand the functionalization processes on silicon, since the resultant internal structures and properties of monolayer-derivative silicon may strongly depend on their course of formation.  相似文献   

16.
The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision.  相似文献   

17.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.  相似文献   

18.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

19.
Surface density gradients of streptavidin (SAV) were created on solid surfaces and demonstrated functionality as a bioconjugation platform. The surface density of immobilized streptavidin steadily increased in one dimension from 0 to 235 ng cm(-2) over a distance of 10 mm. The density of coupled protein was controlled by its immobilization onto a polymer surface bearing a gradient of aldehyde group density, onto which SAV was covalently linked using spontaneous imine bond formation between surface aldehyde functional groups and primary amine groups on the protein. As a control, human serum albumin was immobilized in the same manner. The gradient density of aldehyde groups was created using a method of simultaneous plasma copolymerization of ethanol and propionaldehyde. Control over the surface density of aldehyde groups was achieved by manipulating the flow rates of these vapors while moving a mask across substrates during plasma discharge. Immobilized SAV was able to bind biotinylated probes, indicating that the protein retained its functionality after being immobilized. This plasma polymerization technique conveniently allows virtually any substrate to be equipped with tunable protein gradients and provides a widely applicable method for bioconjugation to study effects arising from controllable surface densities of proteins.  相似文献   

20.
Hydroxyl groups in dextrans have been selectively oxidized to aldehyde groups by sodium periodate in a controlled fashion with a percentage of conversion ranging from 6 to 100%. Dextrans (10, 70, 148, 500, and 2000 kDa) and oxidized 10k dextrans have been successfully grafted to functionalized silicon surfaces. The effect of molecular weight on protein adsorption is not nearly as striking as that of the extent of oxidation. When approximately 25% of the hydroxyl groups have been converted to aldehyde groups, there is negligible protein adsorption on surfaces containing the oxidized polysaccharides. Conformations of grafted polymers depend strongly on their chemical structures, that is, the relative amounts of -OH and -CHO groups. The dependence of the chain conformation as well as the protein resistance on the balance of the hydrogen bond donors (-OH) and the acceptors (-OH and -CHO) implies the importance of chemical structure of surface molecules, specifically the interactions between surface and surrounding water molecules on protein adsorption. Oxidized dextrans are potential poly(ethylene glycol) alternatives for nonfouling applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号