首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luis Radford 《ZDM》2009,41(4):467-480
This article deals with the interpretation of motion Cartesian graphs by Grade 8 students. Drawing on a sociocultural theoretical framework, it pays attention to the discursive and semiotic process through which the students attempt to make sense of graphs. The students’ interpretative processes are investigated through the theoretical construct of knowledge objectification and the configuration of mathematical signs, gestures, and words they resort to in order to achieve higher levels of conceptualization. Fine-grained video and discourse analyses offer an overview of the manner in which the students’ interpretations evolve into more condensed versions through the effect of what is called in the article “semiotic contractions” and “iconic orchestrations.”  相似文献   

2.
To improve our understanding of novice students' production of symbolic algebraic expressions, this article contrasts students' presymbolic and symbolic procedures in generalizing activities. Although a significant amount of previous research on the learning of algebra has dealt with students' errors in the mastering of the algebraic syntax, the semiotic cultural theoretical approach presented here focuses on the role that body, discourse, and signs play when students' refer to mathematical objects. Three types of generalizations are identified: factual, contextual, and symbolic. The results suggest that the passage from presymbolic to symbolic generalizations requires a specific kind of rupture with the ostensive gestures and contextually based key linguistic terms underpinning presymbolic generalizations. This rupture means a disembodiment of the students' previous spatial temporal embodied mathematical experience.  相似文献   

3.
To improve our understanding of novice students' production of symbolic algebraic expressions, this article contrasts students' presymbolic and symbolic procedures in generalizing activities. Although a significant amount of previous research on the learning of algebra has dealt with students' errors in the mastering of the algebraic syntax, the semiotic cultural theoretical approach presented here focuses on the role that body, discourse, and signs play when students' refer to mathematical objects. Three types of generalizations are identified: factual, contextual, and symbolic. The results suggest that the passage from presymbolic to symbolic generalizations requires a specific kind of rupture with the ostensive gestures and contextually based key linguistic terms underpinning presymbolic generalizations. This rupture means a disembodiment of the students' previous spatial temporal embodied mathematical experience.  相似文献   

4.
The paper presents how two different theories—the APC-space and the ATD—can frame in a complementary way the semiotic (or ostensive) dimension of mathematical activity in the way they approach teaching and learning phenomena. The two perspectives coincide in the same subject: the importance given to ostensive objects (gestures, discourses, written symbols, etc.) not only as signs but also as essential tools of mathematical practices. On the one hand, APC-space starts from a general semiotic analysis in terms of “semiotic bundles” that is to be integrated into a more specific epistemological analysis of mathematical activity. On the other hand, ATD proposes a general model of mathematical knowledge and practice in terms of “praxeologies” that has to include a more specific analysis of the role of ostensive objects in the development of mathematical activities in the classroom. The articulation of both theoretical perspectives is proposed as a contribution to the development of suitable frames for Networking Theories in mathematics education.  相似文献   

5.
The notion of mediation, widely used in the current mathematics education literature, has been elaborated into a pedagogical model describing the contribution of integrating tools to the human activity, and to teaching and learning mathematics in particular. Following the seminal idea of Vygotsky, and elaborating on it, we postulate that an artifact can be exploited by the teacher as a tool of semiotic mediation to develop genuine mathematical signs, that are detached from the use of the artifact, but that nevertheless maintain with it a deep semiotic link. The teaching organization proposed in this paper is modeled by what we have called the didactical cycle. Starting from assuming the centrality of semiotic activities, collective mathematical discussion plays a crucial role: during a mathematical discussion the intentional action of the teacher is focused on guiding the process of semiotic mediation leading to the expected evolution of signs. The focus of the paper is on the role of the teacher in the teaching–learning process centered on the use of artifacts and in particular a dynamic geometry environment. Some examples will be discussed, drawn from a long-term teaching experiment, carried out over the past years as part of a National project. The analysis is accomplished through a Vygotskian perspective, and it mainly focuses on the process of semiotic mediation centered on the use of artifacts and on the role of the teacher in this process.  相似文献   

6.
This paper investigates how three children provided mathematical explanations whilst playing with a set of glass jars in a Swedish preschool. Using the idea of semiotic bundles combined with the work on multimodal interactions, the different semiotic resources used individually and in combinations by the children are described. Given that the children were developing their verbal fluency, it was not surprising to find that they also included physical arrangements of the jars and actions to support their explanations. Hence, to produce their explanations of different attributes such as thin and sameness, the children drew on each other’s gestures and actions with the jars. This research has implications for how the relationship between verbal language and gestures can be viewed in regard to young children’s explanations.  相似文献   

7.
8.
The ‘future-oriented middle school mathematics curriculum focused on creativity and personality’ was revised in August of 2011 with the aim of nurturing students’ mathematical creativity and sound personalities. The curriculum emphasizes: contextual learning from which students can grasp mathematical concepts and make connections with their everyday lives; manipulation activities through which students may attain an intuitive idea of what they are learning and enhance their creativity; and reasoning to justify mathematical results based on their knowledge and experience. Since students will not be able to engage in the intended mathematical process with the study-load imposed by the current curriculum, the newly revised curriculum modifies or deletes some parts of the contents that have been traditionally taught mechanically. This paper provides a detailed overview of the main points of the revised curriculum.  相似文献   

9.
10.
11.
This study adds momentum to the ongoing discussion clarifying the merits of visualization and analysis in mathematical thinking. Our goal was to gain understanding of three calculus students' mental processes and images used to create meaning for derivative graphs. We contrast the thinking processes of these three students as they attempted to sketch antiderivative graphs when presented with derivative graphs. These students constructed different and idiosyncratic images and representations leading to different understandings of derivative graphs. Our results suggest that the two students whose cognitive preferences were strongly visual or analytic and who did not synthesize visual and analytic thinking experienced different difficulties associated with their preferred modes for mathematical representation and thinking. Even the student who did synthesize these modes to some extent, to good effect, experienced difficulty when he did not do so. We discuss pedagogical implications for these results in a final section.  相似文献   

12.
This article raises questions about the meaning of “meaning,” which often is understood in terms of the referent or interpretant (sense) of mathematical signs. In this study, which uses data from an interview study with scientists who were asked to read graphs from their own work, a phenomenologically grounded approach is proposed with the intent to contribute toward a more appropriate theory of meaning. I argue that graphs accrue to meaning — which always arises from already existing, existential understanding of the world more generally and the workplace in particular — rather than having or receiving meaning from some place or person. We experience graphs as meaningful exactly at the moment when they are integral to a world that we already understand in an existential but never completely determinable way.  相似文献   

13.
Raymond Duval 《ZDM》2014,46(1):159-170
To situate the contributions of these research articles on visualization as an epistemological learning tool, we have employed mathematical, cognitive and functional criteria. Mathematical criteria refer to mathematical content, or more precisely the areas to which they belong: whole numbers (numeracy), algebra, calculus and geometry. They lead us to characterize the “tools” of visualization according to the number of dimensions of the diagrams used in experiments. From a cognitive point of view, visualization should not be confused with a visualization “tool,” which is often called “diagram” and is in fact a semiotic production. To understand how visualization springs from any diagram, we must resort to the notion of figural unity. It results methodologically in the two following criteria and questions: (1) In a given diagram, what are the figural units recognized by the students? (2) What are the mathematically relevant figural units that pupils should recognize? The analysis of difficulties of visualization in mathematical learning and the value of “tools” of visualization depend on the gap between the observations for these two questions. Visualization meets functions that can be quite different from both a cognitive and epistemological point of view. It can fulfill a help function by materializing mathematical relations or transformations in pictures or movements. This function is essential in the early numerical activities in which case the used diagrams are specifically iconic representations. Visualization can also fulfill a heuristic function for solving problems in which case the used diagrams such as graphs and geometrical figures are intrinsically mathematical and are used for the modeling of real problems. Most of the papers in this special issue concern the tools of visualization for whole numbers, their properties, and calculation algorithms. They show the semiotic complexity of classical diagrams assumed as obvious to students. In teaching experiments or case studies they explore new ways to introduce them and make use by students. But they lie within frameworks of a conceptual construction of numbers and meaning of calculation algorithms, which lead to underestimating the importance of the cognitive process specific to mathematical activity. The other papers concern the tools of mathematical visualization at higher levels of teaching. They are based on very simple tasks that develop the ability to see 3D objects by touch of 2D objects or use visual data to reason. They remain short of the crucial problem of graphs and geometrical figures as tools of visualization, or they go beyond that with their presupposition of students' ability to coordinate them with another register of semiotic representation, verbal or algebraic.  相似文献   

14.
Integrating history of mathematics in classes could be a hard task with young pupils. Indeed, original historical sources have a language that is far from the modern one. Such texts represent cultural artefacts that can give access to mathematical knowledge. The teacher can exploit such potential acting as a mediator between the mathematical signs of the source and those signs that are accessible to students. Through a case study, we investigate the role of the teacher in the process of semiotic mediation during a collective discussion. The analysed intervention is made of two phases: firstly, students work collaboratively and secondly, the teacher mediates a discussion aimed at institutionalizing the knowledge. During the discussion, working on a text from Tartaglia’s translation of Euclid’s Elements, a group of fifth graders constructs a definition of prime numbers. Referring to the Theory of Semiotic Mediation, we analyse the role of the teacher in building up semiotic chains linking students’ productions to an institutionalized knowledge emerging from the collective discussion. We highlight how teacher’s focalization on students’ words allows the progress of the discussion: the potential of the historical text is exploited fostering a definition that is close to culturally shared mathematics.  相似文献   

15.
This paper aims to highlight some peculiarities of the semiotic square, whose creation is due in particular to Greimas’ works. The starting point is the semiotic notion of complex term, which I regard as one of the main differences between Greimas’ square and Blanché’s hexagon. The remarks on the complex terms make room for a historical survey in Aristotle’s texts, where one can find the philosophical roots of the idea of middle term between two contraries and its relation to notions such as difference, position and motion. In the Stagirite’s non-logical works, the theory of the intermediate, or middle term, represents an important link between opposition issues and ethics: this becomes a privileged perspective from which to reconsider the semiotic use of the square, i.e., its inclusion in the semio-narrative structures articulating the sense of texts.   相似文献   

16.
The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles’ concepts. We videoed the learning of a group of three high-achieving students who used technology, specifically GeoGebra, to explore geometric relations related to the adjacent and opposite angles’ concepts. To analyze students’ objectification of these concepts, we used the categories of objectification of knowledge (attention and awareness) and the categories of generalization (factual, contextual and symbolic), developed by Radford. The research results indicate that teacher's and students’ verbal and visual signs, together with the software dynamic tools, mediated the students’ objectification of the adjacent and opposite angles’ concepts. Specifically, eye and gestures perceiving were part of the semiosis cycles in which the participating students were engaged and which related to the mathematical signs that signified the adjacent and the opposite angles. Moreover, the teacher's suggestions/requests/questions included/suggested semiotic signs/tools, including verbal signs that helped the students pay attention, be aware of and objectify the adjacent and opposite angles’ concepts.  相似文献   

17.
Personal Excursions: Investigating the Dynamics of Student Engagement   总被引:1,自引:0,他引:1  
We investigate the dynamics of student engagement as it is manifest in self-directed, self-motivated, relatively long-term, computer-based scientific image processing activities. The raw data for the study are video records of 19 students, grades 7 to 11, who participated in intensive 6-week, extension summer courses. From this raw data we select episodes in which students appear to be highly engaged with the subject matter. We then attend to the fine-grained texture of students’ actions, identifying a core set of phenomena that cut across engagement episodes. Analyzed as a whole, these phenomena suggest that when working in self-directed, self-motivated mode, students pursue proposed activities but sporadically and spontaneously venture into self-initiated activities. Students’ recurring self-initiated activities – which we call personal excursions – are detours from proposed activities, but which align to a greater or lesser extent with the goals of such activities. Because of the deeply personal nature of excursions, they often result in students collecting resources that feed back into both subsequent excursions and framed activities. Having developed an understanding of students’ patterns of self-directed, self-motivated engagement, we then identify four factors that seem to bear most strongly on such patterns: (1) students’ competence (broadly construed); (2) features of the software-based activities, and how such features allowed students to express their competence; (3) the time allotted for students to pursue proposed activities, as well as self-initiated ones; and (4) the flexibility of the computational environment within which the activities were implemented.  相似文献   

18.
The purpose of this paper is to present evidence supporting the conjecture that graphs and gestures may function in different capacities depending on whether they are used to develop an algorithm or whether they extend or apply a previously developed algorithm in a new context. I illustrate these ideas using an example from undergraduate differential equations in which students move through a sequence of Realistic Mathematics Education (RME)-inspired instructional materials to create the Euler method algorithm for approximating solutions to differential equations. The function of graphs and gestures in the creation and subsequent use of the Euler method algorithm is explored. If students’ primary goal was algorithmatizing ‘from scratch’, they used imagery of graphing and gesturing as a tool for reasoning. However if students’ primary goal was to make predictions in a new context, they used their previously developed Euler algorithm to reason and used graphs and gestures to clarify their ideas.  相似文献   

19.
In this paper, I shall discuss some fragments from a teaching experiment on the coordination of spatial perspectives, carried out in several 1st and 2nd grade classrooms over the last twenty years and now being tested also in pre-primary schools. The experiment is framed by an interpretation of semiotic mediation after a Vygotskian perspective (Bartolini Bussi and Mariotti 2007), where drawing, language (in both its oral and written form), gestures and symbolic play are related to each other. The paper is divided into two parts. In the first, some data from the experiment are presented to describe the long term process of internalization of tools in real life drawing, considered as a problem solving task. In the second part, the outcomes will be reconsidered to describe a theoretical perspective, common to other teaching experiments, for the realization of processes of semiotic mediation in the mathematics classroom.  相似文献   

20.
Dongwon Kim  Mi-Kyung Ju 《ZDM》2012,44(2):149-160
The purpose of this study is to explore how students changes through learning to construct mathematical proofs in an inquiry-based middle school geometry class in Korea. Although proof has long been considered as one of the most important aspects of mathematics education, it is well-known that it is one of the most difficult areas of school mathematics for students. The geometry inquiry classroom (GIC) is an experimental class designed to teach geometry, especially focusing on teaching proof, based on students’ own inquiry. Based on a 2-year participant observation in the GIC, this study was conducted to address the following research question: how has students’ practice of mathematical proof been changed through their participation in the GIC? The in-depth analysis of the classroom discourse identified three stages through which the students’ practice of mathematical proof was transformed in the GIC: ‘emergent understanding of proof’, ‘proof learning as a goal-oriented activity’, ‘experiencing proof as the practice of mathematics’. The study found that as learning evolved through these stages, so the mathematics teacher’s role shifted from being an instructor to a mediator of communication. Most importantly, this research showed that the GIC has created a learning environment where students develop their competence in constructing meaningful mathematical proof and grow to be ‘a human who proves’, ultimately ‘a person who playfully engages with mathematics’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号