首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diarylethene‐bridged peptides were developed to photoregulate biomolecular interactions. The peptides are made up of diarylethene‐bridged and DNA‐binding regions at their N‐ and C termini, respectively. The two regions could be independently designed and combined as desired. The α‐helicities of the peptides were photoregulated in on/off or off/on manners, and the manner depended on the positions of two ornithine (Orn) residues for cross‐linking reaction at the diarylethene‐bridged region. In the case of the on/off manner, when the diarylethene structure adopted the open form on the peptides, the peptides folded into stable α‐helices. Upon UV irradiation, the diarylethene moiety isomerized to its closed form to destabilize the helical structures. Quartz crystal microbalance (QCM) analysis showed that the open isomer strongly associated with a target DNA, as compared with the closed one. When the closed‐form peptide existing in the DNA complex was irradiated with a fluorescent lamp in the middle of the QCM monitoring, the frequency change (ΔF) was enhanced by the diarylethene photoisomerization.  相似文献   

2.
Summary: The phase behavior and optical properties of a cholesteric ternary copolymer, containing nematogenic phenylbenzoate, cholesteric, and photochromic diarylethene side groups, and its mixture with 2 wt.‐% fluorescent dopant were studied. The investigation of the kinetics of a photochemical opening‐cycle process of the photochromic groups in the cholesteric mixture proved the energy transfer from the fluorescent dopant to the photochromic diarylethene groups. It was shown that the fluorescence intensity of the fluorescent dopant could be controlled by the portion of the “closed” form of the diarylethene groups. During the photocyclization of the photochromic groups a “degeneration” of the selective light reflection of the cholesteric matrix is observed.

Fluorescence‐resonance energy transfer makes possible the process of photosensitization of the back ring‐opening photoreaction of the photochromic diarylethene groups in the cholesteric polymer matrix.  相似文献   


3.
The "open" and "closed" isomers of the diarylethene molecule that can be converted between each other upon photo-excitation are found to have drastically different current-voltage characteristics when sandwiched between two graphene nanoribbons (GNRs). More importantly, when one GNR is metallic and another one is semiconducting, strong rectification behavior of the "closed" diarylethene isomer with the rectification ratio >10(3) is observed. The surprisingly high rectification ratio originates from the band gap of GNR and the bias-dependent variation of the lowest unoccupied molecular orbital of the diarylethene molecule, the combination of which completely shuts off the current at positive biases. Results presented in this paper may form the basis for a new class of molecular electronic devices.  相似文献   

4.
Diarylethene-bridged peptides were developed to photoregulate biomolecular interactions. The peptides are made up of diarylethene-bridged and DNA-binding regions at their N- and C?termini, respectively. The two regions could be independently designed and combined as desired. The α-helicities of the peptides were photoregulated in on/off or off/on manners, and the manner depended on the positions of two ornithine (Orn) residues for cross-linking reaction at the diarylethene-bridged region. In the case of the on/off manner, when the diarylethene structure adopted the open form on the peptides, the peptides folded into stable α-helices. Upon UV irradiation, the diarylethene moiety isomerized to its closed form to destabilize the helical structures. Quartz crystal microbalance (QCM) analysis showed that the open isomer strongly associated with a target DNA, as compared with the closed one. When the closed-form peptide existing in the DNA complex was irradiated with a fluorescent lamp in the middle of the QCM monitoring, the frequency change (ΔF) was enhanced by the diarylethene photoisomerization.  相似文献   

5.
A photochromic diarylethene with phenolic Schiff base 1a can be easily transformed to photochromic diarylethene with benzoxazole 3a in the conditions of base and phototrigger. Both of their photochromic properties are investigated. They show that the conversions of ring-open form to ring-closed form at photostationary equilibrium are ca. 20% and 10% for 3a and 1a, respectively, and the backconversions are in nearly quantitative yield for both compounds. They also show that the response time for photostationary equilibrium is ca. 0.5 and 5 min for 3a and 1a, respectively, in the solution. In addition, a general preparation of 2-arylbenzoxazole from phenolic Schiff base in the conditions of base and phototrigger is demonstrated by employing phenolic Schiff bases with different substituted groups as template, and other conditions (solvents, in the presence and absence of oxygen) for preparation of benzoxazole from phenolic Schiff base are explored as well.  相似文献   

6.
A highly fluorescent diarylethene in the closed-ring form was synthesized by the oxidation of 1,2-bis(2-methyl-1-benzothiophene-3-yl)perfluorocyclopentene (BTF6).  相似文献   

7.
Hyunbong Choi  Jaejung Ko 《Tetrahedron》2005,61(15):3719-3723
A dyad bearing diarylethene and spiropyran units were synthesized. Ultraviolet light, visible light, H+, and Fe3+ inputs induce the multiple interconversion among the colorless diarylethene with spiropyran form (3), the colored closed form of diarylethene with spiropyran form (4), ME (5), MEH (6, 7) and MEH·Fe3+ (8). The efficient energy transfer from the anthracene emission to MEH·Fe3+ or ME·Fe3+ form was achieved. Using multi-mode photo switching in a dyad 3, logic gates may be built.  相似文献   

8.
A new diarylethene compound with a triazole-linked rhodamine 6G unit attached to the imino group (1O) was designed and synthesized. According to the test results, the solution color and fluorescence color of diarylethene can be modulated by lights and metal ions. The solution color could change from colorless to light purple when irradiated with UV light. When Cu2+ was added to the diarylethene solution, the color of diarylethene solution became blue, the fluorescence color turned from dark to bright yellow. Although the solution color did not change by adding Fe3+, its fluorescence color varied from dark to yellow. Moreover, it was found that the complex ratio of the diarylethene to Cu2+ was 1:1 and the binding stoichiometry of the diarylethene to Fe3+ was also 1:1 based on the data of NMR, MS, and other experiments. Based on these findings, photochromic figure of the diarylethene with UV/Vis light, Cu2+ and Fe3+ was constructed. Furthermore, the logic circuit was designed by input signals (ultraviolet stimulus, visible light stimulus, Cu2+ (or Fe3+) and EDTA) and an output signal (fluorescent intensity at 566?nm (or 575?nm)).  相似文献   

9.
A network composed of gold nanoparticles covered with diarylethene dithiophenols was prepared on an interdigitated nanogapped gold electrode to show the reversible photoswitching of the conductance due to the photochromism of the diarylethene molecules induced by UV and visible light.  相似文献   

10.
New cholesteric polymeric mixture containing nematic side‐chain homopolymer, 2 wt% of photochromic diarylethene dopant and 5 wt% of chiral‐photochromic dopant based on cinnamic acid and isosorbide was prepared. Upon UV irradiation of planarly‐oriented mixture films at room temperature, a transformation of open colorless form of diarylethene dopant into a closed colored form takes place, which is followed by the appearance of an intense absorption maximum in the visible spectral region and decreasing selective light reflection intensity. This process is photo‐ and thermo‐reversible and many cycles ‘recording‐erasing’ can be realized. UV irradiation and subsequent annealing of the films lead to untwisting of the cholesteric helix and cause an irreversible shift of selective light reflection to the long‐wavelength region. This process is explained by the E‐Z isomerization of chiral photochromic groups of the dopant relative to a C?C bond accompanied by a decrease in their twisting ability. It has been shown, that the use of the material prepared in this work provides an opportunity to record two images at the same time: one image is due to a change in the helical pitch and another (second) image is due to the photochromism of diarylethene dopant. It is pertinent to note that using the approach developed in this work allows one to widely vary the range of materials exhibiting dual photochromism. It was demonstrated that the mixture under study shows advantage as new photosensitive material for optics, optoelectronics and data recording. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
We newly synthesized various sized gold nanoparticles covered with photochromic polymers consisting of diarylethenes with various structures to investigate an effect of the gold nanoparticles on the photocycloreversion reaction of the diarylethene chromophores upon irradiation with visible light. The gold nanoparticles covered with the photochromic polymers exhibited reversible changes in localized surface plasmon resonance (LSPR) absorption along with the photochromic reaction depending on the diameter of the particle, the distance between the gold surface and the chromophore, and the structure of the diarylethene chromophore. The rate of the photocycloreversion reaction of the chromophores around the particle was enhanced by the gold nanoparticles and the degree of the enhancement was affected by the diameter of the particle and the distance from the gold surface, while a structural difference in the diarylethene chromophore had no effect on the degree of the enhancement. The larger enhancement of the photocycloreversion reaction was observed by irradiation at longer wavelength side than visible light corresponding to the LSPR frequency.  相似文献   

12.
The photoresponse of diarylethene crystals is found to depend on the intensity of UV light, that is, photoinduced bending is switched to photosalient phenomena by increasing the light intensity. The change in the size of the crystal unit cell upon UV irradiation is larger for asymmetric diarylethenes with thiazole and thiophene rings than that for the corresponding symmetric diarylethenes. As a result, the crystals of an asymmetric diarylethene show much more drastic photosalient effects than those of the corresponding symmetric diarylethene crystals upon UV irradiation. It is also found that the crystals of diarylethene, which have not previously been reported to exhibit a photosalient effect, show photosalient phenomena upon irradiation with strong UV light. Furthermore, the dependence of photosalient phenomena on the size and shape of the crystals is reported.  相似文献   

13.
《Polyhedron》2005,24(16-17):2484-2490
A diarylethene diradical having a new switching unit for intramolecular magnetic interaction was synthesized. The photoswitching unit has an extended π-conjugated chain in one aryl unit, and two nitronyl nitroxide radical are placed at both ends of the π-conjugated chain. The diarylethene moiety is located in the middle of the chain. This diarylethene is designed to change the hybrid orbital from sp2 to sp3 at the 2-position of the thiophene ring when this diarylethene undergoes a photochromic reaction. But the new diradical compound did not undergo photocyclic reaction upon irradiation with UV light. The photochemical behavior is perturbed by a resonant quinoid structure which stabilizes the open-ring isomer.  相似文献   

14.
The diarylethene derivative 1,2‐bis‐(5′‐dimesitylboryl‐2′‐methylthieny‐3′‐yl)‐cyclopentene ( 1 ) containing dimesitylboryl groups is an interesting photochromic material. The dimesitylboryl groups can bind to F?, which tunes the optical and electronic properties of the diarylethene compound. Hence, the diarylethene derivative 1 containing dimesitylboryl groups is sensitive to both light and F?, and its photochromic properties can be tuned by a fluoride ion. Herein, we studied the substituent effect of dimesitylboron groups on the optical properties of both the closed‐ring and open‐ring isomers of the diarylethene molecule by DFT/TDDFT calculations and found that these methods are reliable for the determination of the lowest singlet excitation energies of diarylethene compounds. The introduction of dimesitylboron groups to the diarylethene compound can elongate its conjugation length and change the excited‐state properties from π→π* transition to a charge‐transfer state. This explains the modulation of photochromic properties through the introduction of dimesitylboron groups. Furthermore, the photochromic properties can be tuned through the binding of F? to a boron center and the excited state of the diarylethene compound is changed from a charge‐transfer state to a π→π* transition. Hence, a subtle control of the photochromic spectroscopic properties was realized. In addition, the changes of electronic characteristics by the isomerization reaction of diarylethene compounds were also investigated with theoretical calculations. For the model compound 2 without dimesitylboryl groups, the closed‐ring isomer has better hole‐ and electron‐injection abilities, as well as higher charge‐transport rates, than the open‐ring isomer. The introduction of dimesitylboron groups to diarylethene can dramatically improve the charge‐injection and ‐transport abilities. The closed isomer of compound 1 ( 1 C ) has the best hole‐ and electron‐injection abilities, whereas the charge‐transport rates of the open isomer of compound 1 ( 1 O ) are higher than those of 1 C . Importantly, 1 O is an electron‐accepting and ‐transport material. These results show that the diarylethene compound containing dimesitylboryl groups has promising potential to be applied in optoelectronic devices and thus is worth to be further investigated.  相似文献   

15.
A novel fluorescent switch based on rhodamine B and photochromic diarylethene, 1-[2-methyl-5-(4-methoxylphenyl)-3-thienyl]-2-[2-methyl-5-(4-rhodamine B hydrazine-Schiff base-phenyl)-3-thienyl]perfluorocyclopentene (1), has been successfully synthesized through the condensation of rhodamine B hydrazine and 1-[2-methyl-5-(4-methoxylphenyl)-3-thienyl]-2-[2-methyl-5-(4-formylphenyl)-3-thienyl]perfluorocyclopentene. UV and FL measurements reveal that the compound exhibits good photochromic properties responsive to proton and optic dual inputs. Upon irradiation with 297 nm light, the colorless solution of compound 1 turns blue, while the blue solution becomes colorless after irradiated with visible light (λ>450 nm). Furthermore, upon an addition of H+, the fluorescence resonance energy transfers from the rhodamine unit (FRET donor) to the closed-ring diarylethene unit (FRET acceptor), although no energy transfer occurs when the diarylethene is in the open-ring form. The emission intensity of the rhodamine can be modulated with proton and UV/vis light and molecular-level signal communication has been constructed, indicating high potentials of the compound in molecular switches or naked eye recognition systems.  相似文献   

16.
Recent progresses on diarylethene based photochromic switches   总被引:2,自引:0,他引:2  
Organic photochromic materials have received considerable attention because of their potential for photonic applications, especially for fast and high density data storage. In 2000, Chemical Reviews published a special issue on photochromic materials including a review about the properties and applications of diarylethene photochromic compounds. Since then much impressive progress has been made in this area. Various new diarylethene derivatives have been prepared and examined. The tutorial review presented herein describes developments in diarylethene-based molecular switches made in the last three years. In addition, the synthetic aspects of diarylethene photochromic compounds, which are important issues and neglected in most previous reviews, have been included.  相似文献   

17.
The photocontrollable J-aggregation of a diarylethene-phthalocyanine hybrid (T-ZnPc) and its aggregation-stabilized photochromic behavior were investigated by various techniques. T-ZnPc initially exhibited slight J-aggregation tendency in solvents such as chloroform and toluene through conformational planarization effect, but formed much stronger J-aggregates upon the illumination of 254 nm UV light. In darkness, the UV-irradiated solutions gradually returned to their initial state. These phenomena can be explained by the pronounced change in molecular planarity accompanying the reversible isomerization of the diarylethene units of T-ZnPc. Besides, we have found that the thermal stability of the closed-ring diarylethene isomers in molecularly dispersed T-ZnPc is much poorer than that in aggregates. As long as the aggregates were broken, they converted to corresponding open-ring form instantly. This study provided an example of fully photocontrollable aggregation of phthalocyanines and paved a new way for improving the stability of the photochromic systems.  相似文献   

18.
A diarylethene derivative bearing a phenylenediamine group formed radical ions with an electron acceptor molecule in solution, and the concentration of the radical ions was modulated by the photochromic reaction of the diarylethene, reflecting the difference in the electron-donating character between the open- and closed-ring isomers.  相似文献   

19.
A water soluble diarylethene (DAE) derivative that displays exceptionally intense fluorescence from the colorless open form has been synthesized and characterized using UV/vis spectroscopy and fluorescence microscopy. We show that the bright emission from the open form can be rapidly switched using amplitude modulated red light, that is, by light at wavelengths longer than those absorbed by the fluorescent species. This is highly appealing in any context where undesired background fluorescence disturbs the measurement, e.g., the autofluorescence commonly observed in fluorescence microscopy. We show that this scheme is conveniently applicable using lock-in detection, and that robust amplitude modulation of the probe fluorescence is indeed possible also in cell studies using fluorescence microscopy.

A water soluble diarylethene derivative displaying exceptionally bright fluorescence in the open isomeric form has been used for emission amplitude-modulation. We apply this scheme in fluorescence microscopy, aiming to suppress undesired background.  相似文献   

20.
Establishing a way to fabricate well‐ordered molecular structures is a necessary step toward advancement in organic optoelectronic devices. Here, we propose to use interactions between electric dipoles of molecules and alkali metal ions to form a well‐developed homogeneous monolayer of diarylethene molecules on the Cu(111) surface with the aid of NaCl co‐deposition. Scanning tunneling microscopy and density functional theory calculation results indicate that the formation of a row‐type structure occurs as a result of interactions between the Na+ ions and the diarylethene molecular dipoles, drastically changing the adsorption configuration from that without Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号