首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese oxides function as efficient electrocatalysts for water oxidation to molecular oxygen in strongly alkaline conditions, but are inefficient at neutral pH. To provide new insight into the mechanism underlying the pH-dependent activity of the electrooxidation reaction, we performed UV-vis spectroelectrochemical detection of the intermediate species for water oxidation by a manganese oxide electrode. Layered manganese oxide nanoparticles, δ-MnO(2) (K(0.17)[Mn(4+)(0.90)Mn(3+)(0.07)□(0.03)]O(2)·0.53H(2)O) deposited on fluorine-doped tin oxide electrodes were shown to catalyze water oxidation at pH from 4 to 13. At this pH range, a sharp rise in absorption at 510 nm was observed with a concomitant increase of anodic current for O(2) evolution. Using pyrophosphate as a probe molecule, the 510 nm absorption was attributable to Mn(3+) on the surface of δ-MnO(2). The onset potential of the water oxidation current was constant at approximately 1.5 V vs SHE from pH 4 to pH 8, but sharply shifted to negative at pH > 8. Strikingly, this behavior was well reproduced by the pH dependence of the onset of 510 nm absorption, indicating that Mn(3+) acts as the precursor of water oxidation. Mn(3+) is unstable at pH < 9 due to the disproportionation reaction resulting in the formation of Mn(2+) and Mn(4+), whereas it is effectively stabilized by the comproportionation of Mn(2+) and Mn(4+) in alkaline conditions. Thus, the low activity of manganese oxides for water oxidation under neutral conditions is most likely due to the inherent instability of Mn(3+), whose accumulation at the surface of catalysts requires the electrochemical oxidation of Mn(2+) at a potential of approximately 1.4 V. This new model suggests that the control of the disproportionation and comproportionation efficiencies of Mn(3+) is essential for the development of Mn catalysts that afford water oxidation with a small overpotential at neutral pH.  相似文献   

2.
Ozutsumi K  Taguchi Y  Kawashima T 《Talanta》1995,42(4):535-541
The complexation of urea (ur) with manganese(II), nickel(II) and zinc(II) ions has been studied by titration calorimetry in N,N-dimethylformamide (DMF) containing 0.4M (C(2)H(5))(4) NBF(4) as a constant ionic medium at 25 degrees C. The calorimetric data were well explained in terms of the formation of [Mn(ur)](2+), [Mn(ur)(2)](2+) and [Mn(ur)(4)](2+) for manganese(II), [Ni(ur)](2+) for nickel(II) and [Zn(ur)](2+) and [Zn(ur)(2)](2+) for zinc(II), and their formation constants, reaction enthalpies and entropies were determined. The complexation of the nickel(II)-urea system in DMF has also been studied by means of spectrophotometric titration and electronic spectra of individual nickel(II) complexes were determined. On the basis of the stepwise thermodynamic quantities and the individual electronic spectra of the complexes, it is revealed that the [Mn(ur)](2+), [Mn(ur)(2)](2+), [Ni(ur)](2+), [Zn(ur)](2+) and [Zn(ur)(2)](2+) complexes have a six-coordinate octahedral structure, while the [Mn(ur)(4)](2+) complex has a four-coordinate tetrahedral structure.  相似文献   

3.
Wang Z  Quan Z  Lin J 《Inorganic chemistry》2007,46(13):5237-5242
Highly uniform and well-dispersed CeO(2) and CeO(2):Eu(3+) (Sm(3+), Tb(3+)) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO(2) nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO(2) nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO(2):Eu(3+) nanocrystals exhibits red-shifting with respect to that of the undoped CeO(2) nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO(2) nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu(3+), Tb(3+), Sm(3+)) in the CeO(2) nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO(2)nanocrystals to compensate the effective negative charge associated with the trivalent ions.  相似文献   

4.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

5.
Photoluminescence and Raman studies on Sm(3+)- and Nd(3+)-doped zirconia are reported. The Raman studies indicate that the monoclinic (m) phase dominates up to a 10 at.% lanthanide level, while stabilization of the cubic phase is attained at approximately 20 and approximately 25 at.% of Sm(3+) and Nd(3+), respectively. Both systems are strongly luminescent under photo-excitation. The emission spectrum at 77 K of the ZrO(2):Sm(3+) system consists of a broad band at 505 nm, that corresponds to the zirconia matrix. At room temperature the band maximum blue-shifts to 490 nm. Sharper bands corresponding to f-f transitions within the Sm(3+)ion are also exhibited in the longer wavelength region of the spectrum. Exclusive excitation of the zirconia matrix provides sensitized emission from the acceptor Sm(3+) ion. The excitation profile is dominated by a broad band at 325 nm when monitored either at the zirconia or at one of the Sm(3+) emissions. A spectral overlap between the 6H(5/2)-->(4)G(7/2) absorption of the Sm(3+) ion with the zirconia emission leads to an efficient energy transfer process in the systems. Multiple facets of the spectral behavior of the Sm(3+) or Nd(3+) in the zirconia matrices, as well as the effects of compositions on the emission and Raman properties of the materials, and the role of defect centers in photoluminescence and the energy transfer processes are discussed.  相似文献   

6.
Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of ~40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 ?, c=5.27563 ? and V=47.684 (?)(3)) are found to be greater than that of undoped ZnO (a=3.19993 ?, c=5.22546 ? and V=46.336 (?)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at ~3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to (4)T(1)→(6)A(1) transition of Mn(2+) ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to (55)Mn hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn(2+) ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (χ) have been evaluated.  相似文献   

7.
掺锰五磷酸铈、铽晶体的生长及其光谱   总被引:1,自引:0,他引:1  
用蒸发溶液法从磷酸溶液中首次生长出一系列Ce_xTb_(1-x)P_5O_(14):Mn晶体。它们属于单斜晶系,空间群P2_1/c。计算了晶格常数,用EPR结果确定在晶体中锰离子呈二价。测定了Ce_xTb_(1-x)P_5O_(14):Mn晶体的光谱,说明在晶体中存在着Ce~(3+)到Tb~(3+)和Mn~(2+)的能量转移。Mn~(2+)和Tb~(3+)的发射峰重叠,并使Tb~(3+)的发射峰增强。  相似文献   

8.
Eu(2+) singly and Eu(2+), Mn(2+) co-doped Sr(2)Mg(3)P(4)O(15) exhibit not only the well known blue emission band of Eu(2+) peaking at 448 nm but also a new band at 399 nm in violet. They are attributed to Eu(2+) on different Sr(2+) sites. The Eu(2+) for the violet band can transfer energy to the red emitting Mn(2+) more efficiently than Eu(2+) for the blue band. The new Eu(2+) band could enable Sr(2)Mg(3)P(4)O(15):Mn(2+), Eu(2+) to be a promising phosphor for enriching the red component of white LEDs.  相似文献   

9.
Nearly monodisperse LaAlO(3) hollow spheres are synthesized by a novel precursor thermal decomposition method. Spherical colloids of capsulelike precursors with uniform diameters of 273 ± 35 nm have been synthesized by a solvothermal method. These spherical colloids could convert to LaAlO(3) hollow spheres with diameters of 166 ± 26 nm by a thermal decomposition process. The thermal transformation process from the precursors to LaAlO(3) was characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and the Fourier transform infrared spectroscopy (FT-IR). By the doping of various lanthanide ions (Sm(3+), Eu(3+), and Tb(3+)), the emission luminescence of lanthanide-doped LaAlO(3) hollow microspheres can be tuned from red to green. In particular, these luminescent LaAlO(3) hollow spheres can be well dispersed in polar solvents such as the ethanol and water, which broadens the range of potential applications of these hollow spheres. The UV-vis absorption spectra show energy absorption at 211, 223, and 313 nm corresponding to the host lattice absorption and charge-transfer transitions. The results are in good agreement with the peaks observed in the excitation spectra.  相似文献   

10.
Ca(8)MgLa(PO(4))(7):Ce(3+),Mn(2+) phosphors have been prepared by a conventional solid state reaction under a weak reductive atmosphere. The crystal structure and photoluminescent properties were investigated. It was found that the red emission at 640nm originated from the (4)T(1)((4)G)→(6)A(1)((6)S) transition of Mn(2+) increases dramatically by a factor of 6.4 with the optimum Ce(3+) co-doping. The energy transfer from Ce(3+) to Mn(2+) was proposed to be resonance-type via an electric dipole-dipole mechanism and the energy transfer efficiency was also calculated by the relative emission intensity. With the broadband ultraviolet (UV) absorption of Ce(3+) and the suitable color coordinates, Ca(8)MgLa(PO(4))(7):Ce(3+),Mn(2+) phosphors might be a promising candidate as red phosphors in the field of UV-based white light-emitting diodes.  相似文献   

11.
The systematic incorporation of Cr ions into a phase-pure silicalite-2 lattice was accomplished through hydrothermal synthesis using 3,5-dimethylpiperidinium as a templating agent. The Cr ions, after calcination to remove the template, were in the 6+ oxidation state, with their incorporation into the lattice verified by the systematic expansion of the unit cell as a function of Cr loading. The structures of these materials as revealed by electronic spectroscopy and X-ray absorption near-edge spectroscopy (XANES) were consistent with the dioxo structure typically exhibited by Cr(6+) in an amorphous silica matrix. These materials were highly luminescent, with the emission spectra showing an unusually well-resolved vibronic structure characteristic of an emissive site with little inhomogeneous broadening. The site was reduced under flowing CO to Cr(4+), as characterized by XANES. The reduction of Cr from 6+ to 4+ resulted in unit-cell volumes that are systematically smaller than those observed with Cr(6+), even though the ionic radius of Cr(4+) is larger. This is attributed to the fact that the Cr(6+) site is not a simple metal ion but a significantly larger [CrO(2)](2+) unit, requiring a larger lattice expansion to accommodate it. Through analysis of the XANES preedge and assignment of the ligand-field spectrum of the Cr(4+) ions, it is possible to establish isomorphic substitution into the silicalite lattice.  相似文献   

12.
FTIR, UV-VIS and EPR spectra of manganese doped lead-tellurate glasses with composition xMnO·(100-x)[4TeO2·PbO2] where x=0, 1, 5, 10, 20, 30, 40mol% have been studied. The FTIR spectra show the formation of the Mn-O-Pb and Mn-O-Te bridging bonds by increasing of MnO concentration. The UV-VIS spectra show the Mn(+3) species exhibit pronounced absorption, which masks the Mn(+2) spin-forbidden absorption bands when Mn(+2) ions are in high concentrations in these glasses. The EPR spectra exhibit resonance signals characteristic of Mn(+2) ions. The resonance signal located at g≈2 is due to Mn(+2) ions in an environment close to octahedral symmetry, whereas the resonance at g≈4.3 and 3.3 are attributed to the rhombic surroundings of the Mn(+2) ions. The increase in the MnO content gives rise to absorption at g≈2.4 and the paramagnetic ions are involved in dinuclear manganese centers.  相似文献   

13.
This paper reports on the spectral properties of Mn2+, Co2+ and Ni2+ ions doped B2O3-ZnO-PbO glasses. XRD, FT-IR spectra and DSC profiles of these glasses have also been carried out, and the FT-IR profiles have shown the presence of both BO3 and BO4 units. It is interesting to notice that the FT-IR peak positions are slightly shifted towards higher energy with an increase in transition metal ion concentration change. From the measured DSC thermograms, glass transition (T(g)), crystallization (T(c)) and temperature of melting (T(m)) have been evaluated. From the UV absorption spectra of Mn2+, Co2+ and Ni2+ ions doped glasses, both direct and indirect optical band gaps have been calculated. The visible absorption spectra of Mn2+:glasses have shown a broad absorption band at 520 nm (6A1g(S) --> 4T1g(G)); with Co2+ ions one absorption band at 605 nm (4A2(4F) --> 4T1(4P)) and another at 1450 nm (4A2(4F) --> 4T1(4F)); and for Ni2+:glasses three absorption bands at 420 nm (3A2g(F) --> 3T1g(P)), 805 nm (3A2g(F) --> 1Eg(D)) and 880 nm (3A2g(F) --> 3T1g(F)) have been observed. For Mn2+:glasses, upon excitation with 262 nm, a green emission (539 nm) with a slight blue shift; and with 392 nm, a green emission (534 nm) with a slight red shift with Mn2+ ions concentration change (0.2-0.5 mol%) has been observed. This green emission has been assigned to (4T1(G) --> 6A1(S)) d-d transition of Mn2+ ions that are in tetrahedral co-ordination. For 0.5 mol% Co2+ ions doped glass, upon excitation with 580 nm, a red emission (625 nm) has been observed which originates from 2E(2G) --> 4A2(4F) transition of Co2+ ions in tetrahedral co-ordination. For Ni2+ ions doped glasses upon excitation with 420 nm, a green (577 nm) and red (670 nm) emissions are observed and are assigned to (1T2g(D) --> 3A2g(F)) and (1T2g(D) --> 3T2g(F)) d-d transitions of Ni2+ ions in octahedral co-ordination.  相似文献   

14.
A non-cadmium and water-soluble Mn-doped ZnO(x)S(1-x) QDs was synthesized with denatured bovine serum albumin (dBSA) as stabilizer under nitrogen atmosphere, and the as-prepared products were characterized by X-ray powder diffraction (XRD), UV-vis absorption spectroscopy, fluorescence (FL) emission spectroscopy, high resolution transmission electronmicroscopy (HRTEM) and Raman spectrum. XRD patterns indicate that the Mn-doped ZnO(x)S(1-x) QDs have a zinc-blende structure, and that manganese emerges in the form of divalent manganese (Mn(2+)) and trivalent manganese (Mn(3+)) (the intermediate of the reaction). The size of Mn-doped ZnO(x)S(1-x) QDs is about 3.2±0.7 nm according to HRTEM imaging. The FL spectra reveal that the Mn-doped ZnO(x)S(1-x) QDs have two distinct emission bands: the defect-related emission and the Mn(2+)-related emission, which exhibit a competing process. A good FL signal of the transition of Mn(2+) ((4)T(1)-(6)A(1)) is observed when the doping amounts are 1.0% and 20% respectively, and the as-prepared solutions are stable for more than 6 months at 4°C. This method has the advantages of good stability and environment-friendly stabilizer, for involving no heavy metal ions or toxic reagents.  相似文献   

15.
In the standard electrospray ionization mass spectra of many common, low molecular mass organic compounds dissolved in methanol, peaks corresponding to ions with formula [3M + Met](2+) (M = organic molecule, Met = bivalent metal cation) are observed, sometimes with significant abundances. The most common are ions containing Mg(2+), Ca(2+) and Fe(2+). Their presence can be easily rationalized on the basis of typical organic reaction work-up procedures. The formation of [3M + Met](2+) ions has been studied using N-FMOC-proline methyl ester as a model organic ligand and Mg(2+), Ca(2+), Sr(2+), Ba(2+), Fe(2+), Ni(2+), Mn(2+), Co(2+) and Zn(2+) chlorides or acetates as the sources of bivalent cation. It was found that all ions studied form [3M + Met](2+) complexes with N-FMOC-proline methyl ester, some of them at very low concentrations. Transition metal cations generally show higher complexation activity in comparison with alkaline earth metal cations. They are also more specific in the formation of [3M + Met](2+) complexes. In the case of alkaline earth metal cations [2M + Met](2+) and [4M + Met](2+) complex ions are also observed. It has been found that [3M + Met](2+) complex ions undergo specific fragmentation at relatively low energy, yielding fluorenylmethyl cation as a major product. [M + Na](+) ions are much more stable and their fragmentation is not as specific.  相似文献   

16.
Interactions between metals and catechol (1,2-dihydroxybenzene) or other ortho-dihydroxy moieties are being found in an increasing number of biological systems with functions ranging from metal ion internalization to biomaterial synthesis. Although metal-catecholate interactions have been studied in the past, we present the first systematic study of an array of these compounds, all prepared under identical conditions. We report the ultraviolet-visible absorption (UV-vis) spectra for catecholate and tironate complexes of the first row transition elements. Generation and identification of these species were accomplished by preparing aqueous solutions with varied ligand:metal ratios and subsequently titrating with base (NaOH). Controlled ligand deprotonation and metal binding resulted in sequential formation of complexes with one, two, and sometimes three catecholate or tironate ligands bound to a metal ion. We prepared the mono-, bis- and tris-catecholates and -tironates of Fe(3+), V(3+), V(4+)and Mn(3+), the mono- and bis-catecholates and -tironates of Cu(2+), Co(2+), Ni(2+), Zn(2+), Cr(2+) and Mn(2+), and several Ti(4+) and Cr(3+) species. The UV-vis spectra of each complex are described, some of which have not been reported previously. These data can now be applied to characterization of biological metal-catecholate systems.  相似文献   

17.
Hu YZ  Xiang Q  Thummel RP 《Inorganic chemistry》2002,41(13):3423-3428
A series of four biphen (phen = 1,10-phenanthroline) ligands, 2,2'-biphen (1), 3,3'-biphen (2), 2,2'-dimethylene-3,3'-biphen (3), and 2,3'-dimethylene-3,2'-biphen (4), is prepared by coupling and Friedl?nder methodology. The corresponding mononuclear Ru(II) complexes, [Ru(1-4)(Mebpy)(2)](2+) where Mebpy = 4,4'-dimethyl-2,2'-bipyridine, are prepared. These complexes show long wavelength electronic absorptions at 441-452 nm and emissions at 622-641 nm. Metal-based oxidations occur in the range 1.18-1.21 V, and ligand-based reductions, at -1.20 to -1.30 V. The addition of Zn(2+), Cd(2+), or Hg(2+) ions results in a strong enhancement and red shift of the luminescence of complex Ru-3. Alkali and alkaline earth metal ions barely affect the luminescence of Ru-3 while transition metal ions such as Co(2+), Cu(2+), Ni(2+), and Mn(2+) lead to efficient quenching of the Ru-3 luminescence. The luminescence of Ru-2 and Ru-4 is quenched in the presence of Zn(2+) because of a conformationally induced reduction in electronic communication between the two phen halves of the ligand. The addition of Zn(2+) has only a slight effect on the luminescence of Ru-1 because of steric hindrance toward complexation.  相似文献   

18.
采用静电纺丝技术制备了PVA/[Y(NO3)3+Yb(NO3)3+Er(NO3)3]复合纳米纤维,将其在适当的温度下进行热处理,得到Y2O3∶Yb3+,Er3+上转换纳米纤维.XRD分析表明,复合纳米纤维为无定形,Y2O3∶Yb3+,Er3+上转换纳米纤维属于体心立方晶系,空间群为Ia3.SEM分析表明,复合纳米纤维的平均直径约为150nm;随着焙烧温度的升高,纤维直径逐渐减小.经过600℃焙烧后,获得了直径约60nm的Y2O3∶Yb3+,Er3+上转换纳米纤维.TG-DTA分析表明,当焙烧温度高于600℃时,复合纳米纤维中水分、有机物和硝酸盐分解挥发完毕,样品不再失重,总失重率为83%.FTIR分析表明,复合纳米纤维与纯PVA的红外光谱一致,当焙烧温度高于600℃时,生成了Y2O3∶Yb3+,Er3+上转换纳米纤维.该纤维在980nm的半导体激光器激发下发射出中心波长为521,562nm的绿色和656nm的红色上转换荧光,分别对应于Er3+离子的2H11/2/4S3/2→4Il5/2跃迁和4F9/2→4Il5/2跃迁.对Y2O3∶Yb3+,Er3+上转换纳米纤维的形成机理进行了讨论.  相似文献   

19.
Guo N  Huang Y  You H  Yang M  Song Y  Liu K  Zheng Y 《Inorganic chemistry》2010,49(23):10907-10913
A novel white-light-emitting phosphor Ca(9)Lu(PO(4))(7):Eu(2+),Mn(2+) has been prepared by solid-state reaction. The photoluminescence properties indicate that there is an efficient energy transfer from the Eu(2+) to Mn(2+) ions via a dipole-quadrupole reaction. The obtained phosphor exhibits a strong excitation band between 250 and 430 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip. Upon excitation of UV light, white light is realized by combining a broad blue-green emission band at 480 nm and a red emission band at 645 nm attributed to the Eu(2+) and Mn(2+) ions. The energy-transfer efficiency and critical distance were also calculated. Furthermore, the phosphors can generate lights from blue-green through white and eventually to red by properly tuning the relative ratio of the Eu(2+) to Mn(2+) ions through the principle of energy transfer. Preliminary studies showed that the phosphor might be promising as a single-phased white-light-emitting phosphor for a UV white-light LED.  相似文献   

20.
Kim S  Noh JY  Kim KY  Kim JH  Kang HK  Nam SW  Kim SH  Park S  Kim C  Kim J 《Inorganic chemistry》2012,51(6):3597-3602
In this study, an assay to quantify the presence of aluminum ions using a salicylimine-based receptor was developed utilizing turn-on fluorescence enhancement. Upon treatment with aluminum ions, the fluorescence of the sensor was enhanced at 510 nm due to formation of a 1:1 complex between the chemosensor and the aluminum ions at room temperature. As the concentration of Al(3+) was increased, the fluorescence gradually increased. Other metal ions, such as Na(+), Ag(+), K(+), Ca(2+), Mg(2+), Hg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), Cr(3+), Fe(3+), and In(3+), had no such significant effect on the fluorescence. In addition, we show that the probe could be used to map intracellular Al(3+) distribution in live cells by confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号