首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the feeding on the 13C/12C isotope ratio of four endogenous steroid hormones testosterone (T), epi-testosterone (epi-T), dehydroepiandrosterone (DHEA) and etiocholanolone (ETIO) in bovine urine was investigated. An analytical method to determine the accurate isotope ratio was developed including an extensive clean up followed by enrichment of the analytes in two steps of HPLC fractionation. Feeding experiments with four young animals were performed using C3 and C4 plants (grass, maize silage, hay, etc.) over a time period of about 280 days. One cattle was used as a control animal with no change of its diet over the full period. The detection of the 13C/12C isotope ratio of the acetylated extracts was performed by gas chromatography/combustion isotope ratio mass spectrometry. After the first change of the feeding from C4 to C3 plants significant changes of the delta 13C % values were observed from the -19 to -23% level to the -24 to -32% level for etiocholanolone and epi-testosterone in urine of three animals, whereas the DHEA values remained under the level of the two metabolites. Testosterone could not be detected with GC-C-IRMS due to its low concentration in young animals. After the second change of the diet from C3 to C4 plants (after 222 days), the measured delta 13C % values have been stabilised at the original level. The results show that in case of the feeding with only C3 plants the endogenous delta values of -32% can be reached. In this case the contribution of exogenous material with a delta value of -32% could not be detected independently of the concentration. If the diet contains C4 plants the difference or the ratio of the delta 13C % values becomes the determinant in the discriminatory power. For validation of the method a human and a cattle were treated with testosterone and the delta 13C % values were measured in incurred human and cattle urine.  相似文献   

2.
V Ferchaud  B Le Bizec  F Monteau  F André 《The Analyst》1998,123(12):2617-2620
A new approach was developed in order to control testosterone abuse in animal production. A gas chromatographic-combustion-isotope ratio mass spectrometric (GC-C-IRMS) method was used to distinguish the exogenous character from the endogenous character of the main metabolites of testosterone (epitestosterone and etiocholanolone) in cattle urine. This method is based on a comparison between the carbon isotope ratio (13C/12C) of testosterone metabolites and those of testosterone endogenous precursors. After urinary steroid purification, extracts were acetylated with acetic anhydride and injected into the GC-C-IRMS system. In order to validate the method, testosterone enanthate was administered to a 4 year old cow. The 13C/12C isotope ratios of testosterone exogenous metabolites appeared to be significantly different to the 13C/12C precursor ratios and were detected until 3 weeks after the anabolic administration. These preliminary results appear to be promising for the difficult control of natural hormones in livestock.  相似文献   

3.
A new derivatisation reaction applied to the analysis of steroids by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) was studied. The trimethylsilylated steroids were characterised by well-resolved chromatographic signals, no peak tailing, reproducible 13C/12C measurements (0.32 per thousand, n = 28), good signal-to-noise ratio and absolute intensity (5 x 10(-9) A, 20 ng), and a slow degradation of copper oxide pellets in the combustion furnace. In addition, two new metabolites and one precursor of testosterone in bovine have been brought into consideration and used for GC/C/IRMS measurements, namely, 3beta-hydroxy-5alpha-androstan-17-one (epiandrosterone), 3beta,17alpha-dihydroxy-5alpha-androstane, and 3beta,17alpha-dihydroxy-5-androstene. The new findings have been applied to an elimination study in bovine of testosterone metabolites after an intramuscular injection of testosterone enanthate. Significant differences (up to 4 per thousand) between testosterone metabolites and precursor were detectable at least three weeks after administration.  相似文献   

4.
The use of anabolic agents in food producing animals is prohibited within the EU since 1988 (96/22/EC directive). The control of the illegal use of natural steroid hormones in cattle is still an exciting analytical challenge as far as no definitive method and non-ambiguous analytical criteria are available. The ability of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to demonstrate the administration of 17beta-estradiol to bovine has been investigated in this paper. By comparison of 13C/12C isotopic ratio of main urinary estradiol metabolite, i.e. 17alpha-estradiol, with two endogenous reference compounds (ERCs), i.e. dehydroepiandrosterone (DHEA) and 5-androstene-3beta,17alpha-diol, the differentiation of estradiol metabolite origin, either endogenous or exogenous, has been proved to be achievable. After treatment, the delta(13)C(VPDB)-values of 17alpha-estradiol reached -27 per thousand to -29 per thousand, whereas delta13CVPDB-values of DHEA remained between -13 per thousand and -20 per thousand depending on the diet, maize and grass, respectively. A significant difference of delta13CVPDB between ERCs and 17alpha-estradiol was measurable over a period of 2 weeks after estradiol ester administration to the animal.  相似文献   

5.
A detailed procedure for the analysis of exogenous dehydroepiandrosterone (DHEA) in urine by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) has been established for detecting doping with DHEA. The average delta-value (parts per thousand difference of (13)C/(12)C ratio from the isotope ratio standard) of 26 synthetic steroids commercially available was -30.1 +/- 2.6, and was significantly lower than that of human endogenous DHEA in urine of the world class athletes who had participated in the XVIIth Olympic Winter Games (-20.3 +/- 2.1, n = 446). Although large inter-individual variations of urinary DHEA excretion were observed following a single oral administration of 50 mg of DHEA, no significant inter-individual difference was found when the excretion of exogenous DHEA was monitored in terms of delta-values using GC/C/IRMS; the minimum delta-values were observed around 6-8 h after the administration, and the values returned to the base level at over 72 h after the dosing. Thus, the deviations in delta-values of DHEA and its diol metabolites are considered to be conclusive evidence for detecting doping with DHEA. Some successful cases of detection of doping with DHEA from athletes are also reported.  相似文献   

6.
The use of anabolic agents in food-producing animals has been prohibited within the EU since 1988. The control of the illegal use of natural steroid hormones in cattle is still an exciting analytical challenge as no definitive method and nonambiguous analytical criteria are available. We have used gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to demonstrate the administration of cortisol to cattle. The method consisted of an efficient combination between OASIS HLB solid-phase extraction (SPE), oxidation, SiOH SPE and semi-preparative high-performance liquid chromatography (HPLC) for glucocorticoid purification. By comparison of the (13)C/(12)C isotopic ratio of the oxidised product of cortisol, i.e. 5 beta-androstane-3,11,17-trione (5 beta AAT), with an endogenous reference compound (ERC), dehydroepiandrosterone (DHEA), the differentiation of cortisol metabolite origin, either endogenous or exogenous, has been achieved. After treatment of an animal, the delta(13)C(VPDB) values of 5 beta AAT reached -30 to -32 per thousand, whereas the delta(13)C(VPDB) values of DHEA remained at -25 per thousand. A significant difference in the delta(13)C(VPDB) values between DHEA and 5 beta AAT was measurable over a period of 3 days after a single administration of cortisol to the animal.  相似文献   

7.
A gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) method is described and validated for measurement of delta(13)C values of the acetate derivatives of urinary etiocholanolone and androsterone. The analysis was performed with only 2 mL of urine. The sample preparation consisted of deconjugation with beta-glucuronidase, solid phase extraction, and derivatization with acetic anhydride and pyridine. The within-assay precision of two quality control (QC) urine samples ranged from 0.5 to 2.1 CV%. The between-assay precision in the same QC urines ranged from 1.7 to 3.4 CV%. Administration of testosterone enanthate to a subject resulted in a 6 per thousand decrease in delta(13)C values from -25 per thousand (baseline) to -31 per thousand. Two weeks after testosterone administration was discontinued, the delta(13)C values remained abnormally low while the urine testosterone/epitestosterone (T/E) ratio returned to less than 6. This relatively simple method is useful for rapidly screening a large number of urine samples, including those with T/E <6.  相似文献   

8.
A detailed procedure for the analysis of exogenous hydrocortisone and cortisone in urine by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is proposed. As urinary levels of hydrocortisone are rather low for GC/C/IRMS analysis, the focus is on the main corticosteroid metabolites, tetrahydrocortisone (THE) and tetrahydrocortisol (THF). Following different solid phase extraction purifications, THE and THF are oxidized to 5beta-androstanetrione before analysis by GC/C/IRMS. Significant differences in delta(13)C per thousand values of synthetic natural corticosteroids and endogenous human corticosteroids have been observed. Therefore, a positive criterion, to detect exogenous administration of synthetic corticosteroids in anti-doping control, is proposed.  相似文献   

9.
The use of gas chromatography (GC)-combustion (C)-isotope ratio mass spectrometry (IRMS) demonstrates that a single oral administration of dehydroepiandrosterone (DHEA, 100 mg) to a male subject significantly lowers the 13C content of etiocholanolone (Et) and androsterone (A) in the subject's urine. The difference in carbon isotope ratio (d13C per thousand) values between Et and A increases from 1.6 per thousand at the time of administration to 5.1 per thousand at 26 h post-administration, indicating preferential metabolism of administered DHEA to form Et in relation to A. Multiple oral administrations of DHEA to a male subject reveals lower d13C values during the excretion period of Et (-31.7 per thousand to -34.6 per thousand) and A (-31.4 per thousand to -33.0 per thousand) to that of the d13C value of the administered DHEA (-31.3 per thousand). Reference distributions of d13C Et and d13C A constructed from normal athlete populations within Australia and New Zealand show a small natural discrimination against 13C in the formation of Et relative to A (mean=0.3 per thousand, n=167, p=0.007). Amplified differences between d13C Et and d13C A, and in vivo 13C depletion measured by GC-C-IRMS are shown to be potentially useful for doping control.  相似文献   

10.
We demonstrate that the absorption spectroscopic method can be applied to a precise deltaD (an index of 12CH3D/12CH4) and delta13C (an index of 13CH4/12CH4) analysis for methane samples of natural isotopic abundance. We chose an appropriate absorption line pair whose absorption coefficients have nearly the same temperature dependences so as to minimize the temperature effect in absorbance ratio measurements. We measured 12CH3D/12CH4 ratio by using near-infrared external cavity diode lasers and a new type multi-pass cell. The deltaD value can be determined from the 12CH3D/12CH4 signal-intensity ratio with a fine correction by taking account of the interference of 13CH4 lines. Similarly, the delta13C value is determined from the 13CH4/12CH4 signal-intensity ratio, which is measured by using distributed-feedback laser and a modified Herriot-type cell and corrected for the abundance of 12CH3D. The precision was +/-0.7 and +/-0.027/1000 for deltaD and delta13C, respectively.  相似文献   

11.
This paper describes the effects of oral administration of non-steroidal anti-inflammatory drugs on the endogenous and synthetic anabolic androgenic steroids urinary excretion as assessed by gas-chromatography mass-spectrometry. Experiments were carried out on 5 male subjects, with pathologies and/or diseases, treated with non-steroidal anti-inflammatory drugs. To set up the individual baseline variability of testosterone and its main metabolites, urine samples were collected for 3 days, every 2 h prior to the administration of the drug(s); whereas the study of the effects of a single dose of each drug, here considered, on the endogenous androgen steroid urinary concentrations, was assessed by collecting urine samples for 2 days, every 2 h. Data obtained after drugs administration were then evaluated taking into account the individual baseline variability. The results showed that, only in the case of propyphenazone administration, the relative urinary concentrations of some testosterone metabolites were significantly altered. More specifically, the urinary levels of dehydroepiandrosterone, 11keto-etiocholanolone, 11β-hydroxyandrosterone, 11β-hydroxyetiocholanolone, androsterone, etiocholanolone and some metabolite ratios decrease significantly, generally between 2 and 10 h after administration of the drug, whereas no effects were observed on urinary calculated concentrations of testosterone, epitestosterone, 5α-androstane-3α,17β-diol, 5β-androstane-3α,17β-diol and testosterone/epitestosterone ratio. The observed effects do not depend on alterations on pharmacokinetics (excretion/metabolism), but on steroid sample preparation steps (hydrolysis and derivatization) inhibition. More specifically the significant decrease of dehydroepiandrosterone and testosterone metabolites urinary levels was due to a reduced yield of the steroid derivatization step for the presence in urine of the main metabolites of propyphenazone, namely hydroxyl-propyphenazone metabolites.  相似文献   

12.
A three-step gradient reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the separation of dehydroepiandrosterone (DHEA), its sulfate ester (DHEA-S), its three C7-oxidized metabolites (7αOH-DHEA, 7βOH-DHEA, 7-keto-DHEA), and its biosynthetic congeners (androstenedione, testosterone, estradiol, pregnenolone). This new method allows the quantitative characterization of DHEA metabolism and biosynthetic transformation under given physiological, pathological, or therapeutically influenced circumstances. Tetrahydrofuran probably acts as a proton acceptor coadsorbent, while isopropanol behaves as a proton donor during the separation of testosterone, estradiol, and the stereoisomers of 7-OH-DHEA. Figure Optimized gradient RP-HPLC results in full separation of DHEA from its biosynthetic congeners and metabolites  相似文献   

13.
We have optimized the method of water fluorination using the solid reagent CoF3 to produce O2. This allows isotope ratio measurements by dual-inlet mass spectrometry with very high precision of 0.01 to 0.03/1000 for both delta17O and delta18O. Using this method, delta17O and delta18O of atmospheric O2 were determined as 12.08 and 23.88/1000 vs. VSMOW, respectively. Likewise, delta17O and delta18O of GISP were -13.12 and -24.73/1000, and for SLAP they were -29.48 and -55.11/1000 vs. VSMOW, respectively. Analysis of these data in a ln(delta17O + 1) vs. ln(delta18O + 1) plot yields a line with a regression coefficient (lambda) of 0.5279 +/- 0.0001 (R2 = 0.999999). We also determined the fractionation factors 17alpha and 18alpha in liquid-vapor equilibrium, and found that the ratio ln 17alpha/ln 18alpha is constant (0.529 +/- 0.001) over the temperature range 11.4 to 41.5 degrees C.  相似文献   

14.
According to World Anti-Doping Agency (WADA) rules (WADA Technical Document-TD2004EAAS) urine samples containing dehydroepiandrosterone (DHEA) concentrations greater than 100 ng ML(-1) shall be submitted to isotope ratio mass spectrometry (IRMS) analysis. The threshold concentration is based on the equivalent to the glucuronide, and the DHEA concentrations have to be adjusted for a specific gravity value of 1.020. In 2006, 11,012 doping control urine samples from national and international federations were analyzed in the Cologne doping control laboratory, 100 (0.9%) of them yielding concentrations of DHEA greater than 100 ng mL(-1). Sixty-eight percent of the specimens showed specific gravity values higher than 1.020, 52% originated from soccer players, 95% were taken in competition, 85% were male urines, 99% of the IRMS results did not indicate an application of testosterone or related prohormones. Only one urine sample was reported as an adverse analytical finding having 319 ng mL(-1) DHEA (screening result), more than 10,000 ng mL(-1) androsterone and depleted carbon isotope ratio values for the testosterone metabolites androsterone and etiocholanolone. Statistical evaluation showed significantly different DHEA concentrations between specimens taken in- and out-of- competition, whereas females showed smaller DHEA values than males for both types of control. Also a strong influence of the DHEA excretion on different sport disciplines was detectable. The highest DHEA values were detected for game sports (soccer, basketball, handball, ice hockey), followed by boxing and wrestling. In 2007, 6622 doping control urine samples were analyzed for 3alpha,5-cyclo-5alpha-androstan-6beta-ol-17-one (3alpha,5-cyclo), a DHEA metabolite which was described as a useful gas chromatography-mass spectrometry (GC-MS) screening marker for DHEA abuse. Nineteen urine specimens showed concentrations higher than the suggested threshold of 140 ng mL(-1), six urine samples yielded additionally DHEA concentrations higher than 100 ng mL(-1), none of them showing positive IRMS findings. These results should be taken into consideration in future discussions about threshold values for endogenous steroids in doping control.  相似文献   

15.
Carbohydrates and proteins are among the most abundant naturally occurring biomolecules and so suitable methods for their reliable stable isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) are required. Due to the non-volatile nature of these compounds they require hydrolytic cleavage to their lower molecular weight subunits and derivatisation prior to GC/C/IRMS analysis. The addition of carbon to the molecules and any kinetic isotopic fractionation associated with derivatisation must be accounted for in order to provide meaningful stable isotope values and estimates of propagated errors. To illustrate these points amino acid trifluoroacetate/isopropyl esters and alditol acetates were prepared from authentic amino acids and monosaccharides, respectively. As predicted from the derivatisation reaction mechanisms, a kinetic isotope effect was observed which precludes direct calculation of delta(13)C values of the amino acids and monosaccharides by simple mass balance equations. This study shows that the kinetic isotope effect associated with derivatisation is both reproducible and robust, thereby allowing the use of correction factors. We show how correction factors can be determined and accurately account for the addition of derivative carbon. As a consequence of the addition of a molar excess of carbon and the existence of a kinetic isotope effect during derivatisation, errors associated with determined delta(13)C values must be assessed. We illustrate how such errors can be quantified (for monosaccharides +/-1.3 per thousand and for amino acids between +/-0.8 per thousand and +/-1.4 per thousand). With the magnitude of the errors for a given delta(13)C value of a monosaccharide or amino acid quantified, it is possible to make reliable interpretations of delta(13)C values, thereby validating the determination of delta(13)C values of amino acids as TFA/IP esters and monosaccharides as alditol acetates.  相似文献   

16.
The stable isotope ratios ((13)C/(12)C, (15)N/(14)N, (18)O/(16)O, D/H) of animal feed and milk were investigated, considering cows stabled in two farms and fed with diets made up of different kinds of C(3) plants and different amounts of maize. Maize was characterised by delta(13)C, delta(18)O and deltaD values significantly higher than those of the C(3) plants, while, for the C(3) plants, Festuca arudinacea had significantly higher content of (13)C and (15)N. The delta(13)C and delta(18)O values of the overall diet and the delta(13)C of milk casein and lipids were shown to be significantly correlated with the percentage of maize in the animal diet. On the other hand, the delta(18)O values of milk water and the delta(18)O, deltaD and delta(15)N values of casein were shown to be only slightly influenced by the amount of maize in the feed, being probably more closely correlated with the geo-climatic and pedological characteristics of the area of origin and with the presence of fresh plant or silage in the ration. The delta(13)C value of casein was shown to be a suitable parameter for evaluating the amount of maize in the diet: each 10% increase in the maize content corresponded to a shift of 0.7 per thousand to 1.0 per thousand in the delta(13)C of casein. A threshold value of -23.5 per thousand for delta(13)C in milk casein, above which it is not possible to exclude the presence of maize in the diet, was suggested. The results obtained could be useful for determining mislabelling of dairy products declared to have been produced by pastured animals or of PDO cheeses with an established amount of maize in the diet and for verifying the unpermitted addition of exogenous components to milk.  相似文献   

17.
This study investigates the effects of hydrolysis on the delta13C values of individual amino acids (IAAs) derived from polypeptide standards, and modern and ancient bone collagen. All IAAs were derivatised to their trifluoroacetyl/isopropyl (TFA/IP) esters for delta13C determination using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Firstly, authentic single poly amino acid standards (SPAAs; n = 5) were hydrolysed for 4, 10, 24 and 48 h. As expected, IAA yields increased as a function of hydrolysis time. Significantly, it was only after 24 h of hydrolysis that IAA delta13C values were statistically identical to bulk SPAA values for all five standards. The accuracy of IAA delta13C values was thus shown to be a function of yield; however, poly phenylalanine demonstrated accurate IAA delta13C values with yields of only 1.4 and 4.3%, after 24 and 48 h of hydrolysis time, respectively. Authentic mixed poly amino acid standards (MPAAs; n = 5) comprising two different amino acids were then hydrolysed for 24 h. Percentage recoveries ranged from 36-95%. Estimates of bulk MPAA delta13C values calculated from measured IAA delta13C values agreed within experimental error with measured bulk MPAA values for three out of the five standards. Finally, the experimental procedure was applied to modern rat (MBCs; n = 20) and ancient ovi-caprine and bovine (ABCs; n = 27) bone collagen samples where the delta13C values of 12 out of its 18 constituent amino acids were determined. Estimated bulk MBC and ABC delta13C values were calculated from constituent amino acid delta13C values using mass balance. With the exclusion of three ABC samples, calculated bulk bone collagen delta13C values (delta13C(BCcal)) were shown to correlate extremely well with measured bone collagen values (delta13C(BCmes)) for both modern and ancient samples, where R2 = 0.91 and 0.84, respectively. Significantly, the variation between calculated and measured bone collagen values (Delta13C(BCcal-BCmes)) exhibited similar ranges for both MBC (from -2.6 to +1.2 per thousand ) and ABC (from -2.7 to +2.2 per thousand ) samples, providing evidence for the preservation of intact collagen in the ancient samples. These results demonstrate that the experimental procedures employed in the acid hydrolytic cleavage of peptides or proteins to their constituent amino acids does not involve significant isotopic fractionation.  相似文献   

18.
The use of stable carbon isotope analysis to detect the administration of anabolic steroids to cattle was investigated. Samples were extracted by solid-phase extraction on C18 cartridges. Stable isotope ratios (13C:12C) were measured by gas chromatography-isotope ratio mass spectrometry (GC-IRMS) of the underivatised extracts. A programmed temperature vaporiser (PTV) injector was installed in the GC-IRMS system, which conferred a number of advantages. First, it allowed large volumes of sample to be injected whilst the injector liner was cool. The solvent was subsequently vented to the atmosphere prior to transfer of the sample to the GC column. Thus a significantly greater amount of sample could be presented for analysis, thereby increasing the sensitivity. Second, by this means virtually all the solvent could be removed prior to analysis. This eliminates solvent peak tailing, which can be a major problem in GC-IRMS. Finally, the PTV allowed the use of higher initial GC oven temperatures, which in turn facilitated the analysis of underivatised steroids by reducing the GC run time and improving the chromatographic peak shape. The carbon isotope composition of 5 beta-androstane-3 alpha,17 alpha-diol, the major metabolite of testosterone found in bovine bile, was measured in bile samples from untreated cattle and from cattle injected intramuscularly with testosterone or a mixture of testosterone esters. There was considerable inter-animal variation in the values obtained and there was no significant difference between samples from treated and untreated animals. However, when the isotopic composition of the metabolite was normalised with respect to that of an endogenous reference compound (cholesterol) in the same sample, the difference between treated and untreated animals become statistically significant.  相似文献   

19.
The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry‐based method for the measurement of stable carbon isotopes of endogenous urinary steroids excreted as sulphates is presented. The key element in sample preparation is the consecutive cleanup with high‐performance liquid chromatography of underivatized and acetylated steroids, which allows the isolation of seven analytes (pregn‐5‐ene‐3β,17α,20α‐triol, etiocholanolone, androsterone, epiandrosterone, dehydroepiandrosterone (DHEA), androst‐5‐ene‐3β,17β‐diol and androst‐5‐ene‐3β,17α‐diol) from a single urine specimen. These steroids are of particular importance to doping controls as they should enable the sensitive and retrospective detection of DHEA abuse by athletes. Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers the items, repeatability and reproducibility. The specificity was further demonstrated by gas chromatography/mass spectrometry for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring 13C/12C ratios and urinary concentrations of all implemented steroids, a reference population of n = 67 subjects was measured to enable the calculation of reference limits for all relevant steroidal Δ values. The applicability of the developed method was tested by means of a DHEA excretion study. Despite the fact that orally ingested DHEA is preferentially converted into sulphated metabolites and that the renal clearance of sulphated steroids is slow, only the 13C/12C ratio of EpiA demonstrated the potential to prolong the detection time for DHEA misuse. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes a methodological investigation of the use of gas chromatography/combustion/isotope ratio monitoring mass spectrometry (GC/C/IRMS) for the compound-specific stable isotope analysis of 13C-enriched compounds. Analysis of two 13C-enriched fatty acid methyl esters, possessing delta13C values of approximately 500 per thousand, at a range of concentrations, demonstrated that detectable responses, i.e. chromatographic peaks, could be observed in the 45/44 output even when the compound was present in such low abundance that no peak was observed in the m/z 44 ion chromatogram. A limit of detection, defined as the point at which the signal-to-background ratio was equal to 3, was calculated for two compounds and for both ion chromatograms. The limit of detection in the 45/44 chromatogram was found to be ca. 30 pg injected for methyl 13C-hexadecanoate and ca. 20 pg injected for methyl 13C-octadecanoate, whilst, in the m/z 44 ion chromatogram, detection limits were approximately 180 and approximately 200 pg, respectively. The delta13C value recorded for the analytes was found to be both inaccurate and imprecise below 5 ng of each component injected, although this would not represent a significant drawback in qualitative tracer-type experiments. In a further study of co-injected mixtures of labelled (approximately 500 per thousand) and unlabelled (natural abundance, -20 to -30 per thousand ) fatty acid methyl esters a significant within-run carryover effect was observed, where the isotope values recorded for compounds eluting immediately after enriched components were significantly affected. Whilst this would not affect qualitative results, quantitative data for mixtures containing enriched compounds should be considered with caution. The standards employed in this investigation were enriched to approximately 500 per thousand in 13C; however, these effects would probably be accentuated at higher levels of labelling and with other elements. The limit of detection work demonstrated the potential of GC/C/IRMS as a highly sensitive and selective detector with many possible applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号