首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Oxidation of m- and p-substituted benzylidene fluorenes to antiaromatic dications was attempted by electrochemical and chemical means. Electrochemical oxidation to dications was successful for benzylidene fluorenes with p-methoxy, p-methyl, p-fluoro, and unsubstituted phenyl rings in the 3-position; attempts to oxidize the m-substituted derivatives via electrochemistry were unsuccessful. Chemical oxidation with SbF(5)/SO(2)ClF gave the dication of 9-[(4-methoxyphenyl)methylene]-9H-fluorene cleanly; oxidation of all other substituted benzylidene fluorenes resulted in mixtures of products. The excellent linear relationship between the chemical shifts calculated by the GIAO method and the experimental shifts for the p-methoxy-substituted benzylidene fluorene dication suggests that the calculations satisfactorily reflect the magnetic properties of this dication and potentially those of the other dications studied. The redox potentials from electrochemical oxidation, a measure of the stability of the dications, showed a good linear relationship with another measure of stability, the calculated difference in energy between each dication and its neutral precursor. The dications of benzylidene fluorenes were less stable than the dications of diphenylmethylidene fluorenes; within each type of compound, dications with p-substituted phenyl rings were more stable than dications with m-substituted phenyl rings and dications with phenyl rings substituted with electron-donating groups were more stable than dications with phenyl rings substituted with electron-withdrawing groups. The antiaromaticity of the fluorenyl system was assessed through the nucleus-independent chemical shift (NICS) that was also calculated by the GIAO method. The plot of the NICS values per square area versus the calculated energy difference for the dications showed a moderate degree of linearity; the plot of NICS values per square area versus the oxidation potentials was less linear. Thus, a suggestive, but not conclusive, relationship between magnetic and energetic measures of antiaromaticity was observed.  相似文献   

2.
[reaction: see text] Electrochemical oxidation of meta-substituted diphenylmethylidenefluorenes (3a-g) results in the formation of fluorenylidene dications that are shown to be antiaromatic through calculation of the nucleus independent chemical shift (NICS) for the 5- and 6-membered rings of the fluorenyl system. There is a strong linear correlation between the redox potential for the dication and both the calculated NICS and sigma(m). Redox potentials for formation of dications of analogously substituted tetraphenylethylenes shows that, with the exception of the p-methyl derivative, the redox potentials for these dications are less positive than for formation of the dications of 3a-g and for dications of p-substituted diphenylmethylidenefluorenes, 2a-g. The greater instability of dications of 2a-g and 3a-g compared to the reference system implies their antiaromaticity, which is supported by the positive NICS values. The redox potentials for formation of the dications of meta-substituted diphenylmethylidenes (3a-g) are more positive than for the formation of dications of para-substituted diphenylmethylidenes (2a-g), indicating their greater thermodynamic instability. The NICS values for dications of 3a-g are more antiaromatic than for dications of 2a-g, which is consistent with their greater instability of the dications of 3a-g. Although the substituted diphenylmethyl systems are not able to interact with the fluorenyl system through resonance because of their geometry, they are able to moderate the antiaromaticity of the fluorenyl cationic system. Two models have been suggested for this interaction, sigma to p donation and the ability of the charge on the substituted ring system to affect delocalization. Examination of bond lengths shows very limited variation, which argues against sigma to p donation in these systems. A strong correlation between NICS and sigma constants suggests that factors that affect the magnitude of the charge on the benzylic (alpha) carbon of the diphenylmethyl cation affect the antiaromaticity of the fluorenyl cation. Calculated atomic charges on carbons 1-8 and 10-13 show an increase in positive charge, and therefore greater delocalization of charge in the fluorenyl system, with increasing electronegativity of the substituent. The change in the amount of positive charge correlated strongly with NICS, supporting the model in which the amount of delocalization of charge is related to the antiaromaticity of the species. Thus, both aromatic and antiaromatic species are characterized by extensive delocalization of electron density.  相似文献   

3.
The relationship between the calculated energy of the HOMO-LUMO gap, where (epsilonLUMO - epsilonHOMO)/2 is defined as DeltaHL, and of the longest wavelength transition in the UV-visible spectrum, DeltaE, was examined for a series of aromatic and antiaromatic cations and dications. TD-DFT calculations accurately modeled the energies of a series of dications including fluorenylidene dications whose UV-visible spectra are reported, as well as the energies of a series of aromatic and antiaromatic monocations whose spectra were previously reported. There is a linear correlation of the energy of the longest wavelength transition, DeltaEcalc, with DeltaHL. There is no linear relationship between DeltaEcalc and the sum of the NICS values, but there is a linear relationship between DeltaEcalc multiplied by the number of atoms in the conjugated system, DeltaEcalcT, and the sum of the NICS values. There is also an approximate linear relationship between the average 1H NMR shift and the sum of the NICS values. These relationships give further support to the suggestion that the magnetic and energetic criteria of aromaticity and antiaromaticity are related. Furthermore, the data suggest that species that have DeltaEcalcT < 20 are antiaromatic whereas those with DeltaEcalcT > 30 are aromatic.  相似文献   

4.
The antiaromaticity of fluorenylidene dications 1-5, which contain cyclic cationic substituents, has been examined using magnetic criteria, NICS and magnetic susceptibility, and by structural criteria, HOMA. The magnetic criteria, including proton chemical shifts, strongly support the antiaromaticity of the fluorenyl ring system of these dications. HOMA values are a very insensitive measure of structural effects in polycyclic ring systems because they reflect the inability of the fused ring systems to respond to changes in aromaticity/antiaromaticity. Finally, in these systems, the interaction between the ring systems appears to occur primarily through a type of hyperconjugation, as demonstrated by a decrease in the bond lengths for the bonds connecting the ring systems. In conjunction with the evaluation of magnetic effects, the quality of the calculation of (1)H and (13)C NMR shifts was assessed by comparison with experimental data. The calculation of (13)C NMR shifts was excellent in all methods examined, but the quality of (1)H NMR shifts was substantially poorer in calculations using the IGLO method, basis set DZ or II. The CSGT method gives a superior correlation between experimental and calculated (1)H NMR shifts.  相似文献   

5.
The dianion, 5(2-), and dication, 5(2+), of tetrabenzo[5.7]fulvalene represent an aromaticity/antiaromaticity continuum in which the fluorenyl system changes from aromatic in 5(2-) to antiaromatic in 5(2+). Conversely, the antiaromatic dibenzotropylium system of 5(2-) becomes an aromatic system in 5(2+), allowing an examination of aromaticity/antiaromaticity within the same carbon framework. Dianion 5(2-) was prepared and characterized by (1)H NMR spectroscopy. The fluorenyl system of 5(2-) showed the downfield shifts expected for an aromatic system, while the dibenzotropylium system showed the paratropic shifts expected for an antiaromatic system. The conclusions from (1)H NMR spectroscopy were supported by NICS(1) zz calculations for each system. Comparison of the (1)H NMR spectrum and NICS(1) zz of 5(2-) with those of 5(2+) supported the assignments of aromaticity/antiaromaticity for each system. Aromaticity/antiaromaticity were further examined through comparison of the degree of bond length alternation, which showed that the bond length alternation was slightly greater for the antiaromatic ring systems than for the aromatic systems. However, when structures of 5(2-) and 5(2+) with no bond length alternation were examined, there was a dramatic increase in the degree of antiaromaticity for the antiaromatic ring systems as evaluated through NICS. This result suggests that a decrease in bond length alternation results in an increase in antiaromaticity as well as an increase in aromaticity. The magnitude of the antiaromaticity of the fluorenyl system in 5(2+) was greater than the magnitude of the aromaticity in the fluorenyl system of 5(2-), with similar effects shown by the analogous tropylium systems. This is consistent with the behavior of the antiaromatic dication of tetrabenzo[5.5]fulvalene, compared to that of its aromatic dianion, and also with the behavior of the cyclopentadienyl cation/anion and tropylium cation/anion.  相似文献   

6.
Dications of p-substituted 3-phenylindenylidenefluorenes were prepared to examine the response of the resulting indenyl and fluorenyl cationic systems to magnetic measures of antiaromaticity. All measures, (1)H NMR shifts, nucleus independent chemical shifts (NICS(1)(zz)), and magnetic susceptibility exaltation, Lambda, supported the antiaromaticity of the dications 3a-f2+. The 1H NMR shifts and NICS(1)(zz) showed that the indenyl ring system was less antiaromatic than the fluorenyl ring system, contrary to the antiaromaticity of indenyl monocations compared to fluorenyl monocations. The presence of a phenyl substituent in the 3-position was able to stabilize the indenylidene cation through resonance, decreasing its antiaromaticity, but even in the absence of the 3-phenyl substituent, the indenyl system of indenylidenefluorene dications was less antiaromatic than the fluorenyl system. The decreased antiaromaticity of the 3-phenylindenylidenefluorene dications over the unsubstituted indenylidenefluorene dication was supported by (anti)aromatic (de)stabilization energy calculations, ASE.  相似文献   

7.
The aromaticity of the dianion (2) and the antiaromaticity of the dication (3) of tetrabenzo[5.5]fulvalene have been evaluated through magnetic criteria, (1)H NMR shifts, nucleus-independent chemical shifts, NICS, and magnetic susceptibility exaltation, Lambda. The sum of the NICS values, using the GIAO (gauge-independent atomic orbital) method, for 2 is -35.2; that of 3 is +38.2, indicating the aromaticity of 2 and the antiaromaticity of 3. Calculation of magnetic susceptibility exaltation using the CSGT (continuous set of gauge transformations) method gives a similar result, with Lambda of -81.8 ppm cgs for 2 and 95.8 ppm cgs for 3. The general validity of these values is supported by excellent agreement between the NMR shifts calculated by the GIAO and CSGT methods with experimental shifts. Comparison of 1H NMR shifts with those of model compounds allows evaluation of the magnitude of the diatropic shift in 2 and paratropic shift in 3 and supports their assignment as aromatic/antiaromatic, respectively. The agreement between calculated and experimental 1H NMR shifts is excellent for 3 in the absence of counterions but much better for 2 when counterions are included. Inclusion of counterions in the evaluation of diatropic shift for 2 gave a smaller shift than in the absence of counterions, suggesting a decreased aromaticity. When counterions were included in the calculation of Lambda, the value was also decreased, suggesting a decreased aromaticity. This observation has important consequences in the use of experimental data for the evaluation of aromaticity, and presumably antiaromaticity, of anions since, in most cases, there will be close interaction with counterions.  相似文献   

8.
Dications of 9-(3-phenyl-1H-inden-1-ylidene)-5H-dibenzo[a,d]cycloheptene, 5(2+), were prepared by oxidation with SbF(5) in SO(2)ClF, and their magnetic behavior was compared to dications of 9-(3-phenyl-1H-inden-1-ylidene)-9H-fluorene, 2(2+). The good correlation between the experimental (1)H NMR shifts for the dications that were oxidized cleanly and the chemical shifts calculated by the GAIO method supported the use of the nucleus independent chemical shifts, NICS, to evaluate the antiaromaticity of the indenyl systems of 2(2+)/5(2+) and their unsubstituted parent compounds, 6(2+) and 7(2+), as well as the antiaromaticity of the fluorenyl system of 2(2+)/7(2+) and the aromaticity of the dibenzotropylium system of 5(2+)/6(2+). Antiaromaticity was shown to be directly related to the amount of charge in the antiaromatic systems, with the antiaromatic systems more responsive to changes in the calculated NBO charge than the aromatic systems. The antiaromaticity was also shown to be directly related to the amount of delocalization in the ring system. The aromaticity of the dibenzotropylium system was much less responsive to changes in the amount of charge in the tropylium system, because the aromatic system was much more completely delocalized. Thus, antiaromatic species are more sensitive probes of delocalization than aromatic ones.  相似文献   

9.
The dications 6, 7, and 8 and dianions 9, 10, and 11 of the bistricyclic aromatic enes bifluorenylidene (1), 1,1'-biphenalenylidene (2), and 9-(9H-fluoren-9-ylidene)-1H-phenalene (4), as well as monocations 12a and 13a and monoanions 14a and 15a of phenalene (3) and fluorene (5), were subjected to a systematic DFT and ab initio study. B3LYP and MP2 methods were employed to estimate the relative aromaticity/antiaromaticity of these ions, using energetic, magnetic, and structural criteria. The couplings of monoions 12a-15a to give the respective diions 6-11 result in a similar destabilization in both the fluorene and phenalene series. The interactions between the C13H8 units in diions 6-11 are weak and are not expected to result in a significant loss of aromaticity/gain of antiaromaticity, as compared with the respective monoions. The antiaromaticity of bifluorenylidene dication (6), relative to that of two fluorenyl cations (12a), is only slightly enhanced as compared with the aromaticity of biphenalenylidene dication ((E)-7)) relative to that of two phenalenyl cations (13a). In particular, the homodesmotic reaction 6 + 2.13a = (E)-7 + 2.12a is only slightly exothermic, DeltaE(Tot) = -6.0 kJ/mol. The energetic effect of the analogous reaction involving anions 9 + 2.15a = (E)-10 + 2.14a is even smaller, DeltaE(Tot) = -3.4 kJ/mol. Bifluorenylidene dianion (9) and 1,1'-biphenalenylidene dianion ((E)-10) are aromatic, but the employed criteria disagree about their relative aromaticity. The electronic and structural properties of heteromerous dication 8 and dianion 11 lie between those of the homomerous diions. Thus, dications 6-8 and dianions 9-11 form a continuum of aromaticity/antiaromaticity.  相似文献   

10.
When the nucleus independent chemical shifts, NICS(1)zz, for a set of aromatic and antiaromatic hydrocarbons are summed, they show an excellent linear relationship with the magnetic susceptibility exaltation, Lambda, for neutral, cationic, and monoanionic species. Aromatic and antiaromatic dianions show a similar relationship but with a different slope. However, when both Lambda and the summation of NICS(1)zz are divided by the area of the ring squared, the vast majority of the aromatic and antiaromatic species fall on the same line, indicating that both NICS and Lambda are affected by the size of the ring. The species that deviate slightly from the line are a few of the anionic compounds, which may be a result of the difficulties of calculating magnetic properties of anions. This is the first report of the relationship of NICS to ring area. In addition, the excellent correlation between Lambda and the summation of NICS(1)zz demonstrates that summation of NICS(1)zz values for individual ring systems of polycyclic ring systems to give a measure of the aromaticity of the entire system is justified. By extension, the excellent correlation also serves to demonstrate that the NICS(1)zz values for individual ring systems are reliable measures of local aromaticity/antiaromaticity. Finally, the excellent correlation between experimental shifts and the 13C NMR shifts calculated with density functional theory, B3LYP/6-311+g(d,p), serves as an indirect validation of the accuracy of the NICS(1)zz calculated by the same method and basis set.  相似文献   

11.
Cyclopentadiene derivatives with electronegative (F, Cl) or electropositive (H(3)Si, Me(3)Si) bis-5,5-substituents were studied at the B3LYP/6-311G* level of theory. It was found that there is no special stabilization or destabilization for any of the derivatives; the energetic effects that were previously attributed to aromatic stabilization or antiaromatic destabilization are the result of interactions in the reference systems. A nucleus-independent chemical shift (NICS) scan study at the HF-GIAO/6-311+G* theoretical level of these and similar derivatives suggest that they all show different magnitudes of diamagnetic ring current. None of the derivatives shows a paramagnetic ring current. Thus, cyclopentadienes are neither aromatic nor antiaromatic. It is also concluded that a diamagnetic ring current is perhaps necessary but certainly not a sufficient condition for aromaticity. The NICS scan procedure describes the type of ring current in the system, whereas a single isotropic NICS value (i.e., NICS(1)) may wrongly assign the type of ring current. It is shown that neither NICS(1) nor the NICS scan procedure can be used as a single aromaticity criterion.  相似文献   

12.
13.
The aromaticity and antiaromaticity of the ground state (S 0), lowest triplet state (T 1), and first singlet excited state (S 1) of benzene, and the ground states (S 0), lowest triplet states (T 1), and the first and second singlet excited states (S 1 and S 2) of square and rectangular cyclobutadiene are assessed using various magnetic criteria including nucleus-independent chemical shifts (NICS), proton shieldings, and magnetic susceptibilities calculated using complete-active-space self-consistent field (CASSCF) wave functions constructed from gauge-including atomic orbitals (GIAOs). These magnetic criteria strongly suggest that, in contrast to the well-known aromaticity of the S 0 state of benzene, the T 1 and S 1 states of this molecule are antiaromatic. In square cyclobutadiene, which is shown to be considerably more antiaromatic than rectangular cyclobutadiene, the magnetic properties of the T 1 and S 1 states allow these to be classified as aromatic. According to the computed magnetic criteria, the T 1 state of rectangular cyclobutadiene is still aromatic, but the S 1 state is antiaromatic, just as the S 2 state of square cyclobutadiene; the S 2 state of rectangular cyclobutadiene is nonaromatic. The results demonstrate that the well-known "triplet aromaticity" of cyclic conjugated hydrocarbons represents a particular case of a broader concept of excited-state aromaticity and antiaromaticity. It is shown that while electronic excitation may lead to increased nuclear shieldings in certain low-lying electronic states, in general its main effect can be expected to be nuclear deshielding, which can be substantial for heavier nuclei.  相似文献   

14.
Derivative current-density maps are used to follow the changes in ring-current (and hence, on the magnetic criterion, the changes in aromaticity) with the Kekulé vibrations of the prototypical aromatic, antiaromatic, and nonaromatic systems of benzene, cyclooctatetraene (COT), and borazine. Maps are computed at the ipsocentric CHF/6-31G**//RHF/6-31G** level. The first-derivative map for benzene shows a growing-in of localized bond currents, and the second-derivative map shows a pure, paratropic "antiring-current", leading to the conclusion that vibrational motion along the Kekulé mode will reduce the net aromaticity of benzene, on average. For planar-constrained D(4h) COT, the Kekulé mode (positive for reduction of bond-length alternation) increases paratropicity at both first and second order, indicating an average increase in antiaromaticity with zero-point motion along this mode. On the ring-current criterion, breathing expansions of benzene and D(4h) COT reduce aromaticity and increase antiaromaticity, respectively.  相似文献   

15.
Derivatives of the dication of tetrabenzo[5.5]fulvalene were prepared with phenyl and ethynyl spacers through ionization of the appropriate bis-methylethers. The antiaromaticity shown by the parent dication was demonstrated for these dications with spacers, although it was attenuated by the presence of the spacer. It was substantially greater than that of fluorenyl monocations with similar substituents. Antiaromaticity was evaluated through comparison of (1)H NMR shifts with those of acyclic analogues, through nucleus independent chemical shifts, and through magnetic susceptibility exaltation. Although the fluorenyl systems are separated by spacers, the antiaromaticity of one system is affected by the other remote fluorenyl system. An explanation for this interaction may lie in the ability of a remote cationic substituent to attenuate delocalization in the spacer. The use of spacers is designed to prevent side reactions in less stable antiaromatic dications, allowing exploration of a number of species that have previously been inaccessible.  相似文献   

16.
The antiaromaticity of a series of dianions of p-substituted benzylidene dibenzo[a,d]cycloheptenes was examined through calculated measures of antiaromaticity. The nucleus-independent chemical shifts (NICS) and magnetic susceptibility exaltation both showed substantial antiaromatic character in the benzannulated tropylium anion. When the antiaromaticity was normalized for the area of the ring, these tropylium anions were shown to be among the most antiaromatic anions in the chemical literature. Attempts to make the dianion through reduction with lithium or potassium gave the tetraanion as the only species observable in the (1)H NMR spectrum. Quench of the reaction mixture with trimethylsilyl chloride or D(2)O confirmed the presence of the tetraanion, but only as a small portion of the reaction mixture, with the major product being unreacted starting material. The failure to observe starting material was attributed to similarities in the structures of the starting material and anion radical (first reduction), allowing rapid electron transfer between them. The inability to see the dianion (second reduction) could be the result of the very small HOMO-LUMO gap anticipated for highly antiaromatic species, which would allow access to diradical species. The magnitude of the HOMO-LUMO gap was determined by the difference between the HOMO and LUMO energies from geometry optimization and the lowest energy transition from TD-DFT calculations. The HOMO-LUMO gap for the benzylidene dibenzocycloheptatriene dianions was shown to be much smaller than the HOMO-LUMO gap of species for which (1)H NMR spectra had been observed.  相似文献   

17.
Oxidation of 3,6-disubstituted tetrabenzo[5.5]fulvalenes by SbF(5) results in the formation of dications that behave like two antiaromatic fluorenyl cations connected by a single bond. Both fluorenyl systems exhibit the paratropic shifts and nucleus independent chemical shifts (NICS) characteristic of antiaromatic species. Comparison with analogous 2,7-disubstituted tetrabenzo[5.5]fulvalenes reveals that the antiaromaticity of the substituted ring system can be altered substantially by changes in the placement of the substituents, possibly due to changes in the delocalization of charge in the system. Substituents in the 3,6-position decrease the antiaromaticity because of the increase in the benzylic resonance compared to 2,7-substituents.  相似文献   

18.
Statistical analyses of quantitative definitions of aromaticity, ASE (aromatic stabilization energies), RE (resonance energies), Lambda (magnetic susceptibility exaltation), NICS, HOMA, I5, and A(J), evaluated for a set of 75 five-membered pi-electron systems: aza and phospha derivatives of furan, thiophene, pyrrole, and phosphole (aromatic systems), and a set of 30 ring-monosubstituted compounds (aromatic, nonaromatic, and antiaromatic systems) revealed statistically significant correlations among the various aromaticity criteria, provided the whole set of compounds is involved. Hence, broadly considered, the various manifestations of aromaticity are related and aromaticity can be regarded statistically as a one-dimensional phenomenon. In contrast, when comparisons are restricted to some regions or groups of compounds, e.g., aromatic compounds with ASE > 5 kcal/mol or polyhetero-five-membered rings, the quality of the correlations can deteriorate or even vanish. In practical applications, energetic, geometric, and magnetic desriptors of aromaticity do not speak with the same voice. Thus, in this sense, the phenomenon of aromaticity is regarded as being statistically multidimensional.  相似文献   

19.
The spatial magnetic properties (through-space NMR shieldings, or TSNMRSs) of the antiaromatic 9-oxaanthracene anion 12(-) and of the corresponding 9-dimeric dianion 11(2-) have been calculated by the gauge-invariant atomic orbitals (GIAO) perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSSs) of various size and direction. The TSNMRS values, thus obtained, can be employed to indicate antiaromaticity by paratropic ring currents of the anionic compounds of 11(2-) and 12(-) studied and other neutral and ionic antiaromatic molecules from previous studies because anisotropic effects of functional groups in (1)H NMR spectra have quantitatively proven to be the molecular response property of theoretical spatial nucleus independent chemical shieldings (NICS).  相似文献   

20.
We have theoretically designed five different m-phenylene coupled high-spin bis-heteroverdazyl diradicals and their analogous p-phenylene coupled low-spin positional isomers. The geometry-based aromaticity index, harmonic oscillator model of aromaticity (HOMA) values for both the couplers (local HOMA), and the whole diradicals (global HOMA) have been calculated for all the diradicals. We also qualitatively relate these HOMA values with the intramolecular magnetic exchange coupling constants (J), calculated using a broken symmetry approach within unrestricted density functional theory framework. Structural aromaticity index HOMA of linkage specific benzene rings in our designed diradical systems shows that the aromatic character depends on the planarity of the molecule and it controls the sign and magnitude of J. The predicted J values are explained on the basis of spin polarization maps, average dihedral angles, and magnetic orbitals. The effect of the spin leakage phenomenon on magnetic exchange coupling constant and that on HOMA values of certain phosphaverdazyl systems has been explicitly discussed. In addition, a similar comparison is made between the calculated exchange coupling constants and corresponding HOMA values. The main novelty of this work stands on the consideration of the aromatic behavior by means of the geometrical index HOMA. We also estimate another aromaticity index, nucleus independent chemical shift (NICS) values for the phenylene coupler in each diradical to measure aromaticity and compare its value with that of HOMA. The ground state stabilities of these diradicals have also been compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号