首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work the first experimental observation of a peculiar behavior in the isotropic phase of liquid crystals by means of 2H NMR is reported. In particular, two five-ring banana-shaped mesogens, the 1,3-phenylenebis{4,4'-(11-undecenyloxy)benzoyloxy}benzoate (Pbis11BB) and its 4-chloro homologue (ClPbis11BB), selectively deuterium labeled on their central rings, are the subject of our investigation. The dynamic behavior of the two liquid crystals was studied in their isotropic phases and in the nematic phase of ClPbis11BB by means of 2H NMR line width and spin-spin relaxation time (T2) analysis. The results obtained reveal that the unusual line broadening observed in the 2H NMR spectra in the isotropic phase, even far above the isotropic phase-mesophase transition, has a homogeneous nature, thus indicating the presence of reorientational motions much slower than in conventional isotropic liquid-crystalline phases.  相似文献   

2.
ClPbis11BB and Pbis11BB, two banana-shaped mesogens differing by a chlorine substituent on the central phenyl ring, show a nematic and a B2 phase, respectively. To obtain information on the structural features responsible for their different mesomorphic behavior, a study of the preferred conformations of these mesogens has been performed by NMR spectroscopy in two nematic media (Phase IV and ZLI1167), which should mimic the environment of the molecules in their own mesophases, avoiding problems of sample alignment by a magnetic field. To this aim, 2H NMR experiments have been performed on selectively deuterated isotopomers of ClPbis11BB and Pbis11BB and of two parent molecules, ClPbisB and PbisB, assumed as models in previous theoretical and experimental conformational studies. We found that only a limited number of conformations is compatible with experimental data, often very different from those inferred from theoretical calculations in vacuo, indicating a strong influence of the liquid crystalline environment on molecular conformation. No significant differences between chlorinated and non-chlorinated molecules were found, this suggesting that chlorine does not change the molecular conformational equilibrium, as previously proposed.  相似文献   

3.
In the present work, we analyze pulsed deuterium NMR experiments performed on the isotropic and nematic phases of the banana-shaped liquid-crystalline mesogen 4-chloro-1,3-phenylene bis{4-4'-(11-undecenyloxy) benzoyloxy} benzoate (ClPbis11BB) selectively deuterated on the central ring. Starting from a previous evidence of unusual slow dynamics in the isotropic phase (Domenici V. et al., J. Phys. Chem. B 2005, 109, 769), a quantitative and model-supported analysis of the deuterium NMR data is performed here by accounting for slow-motional modulation of the magnetic anisotropies through the full solution of the stochastic Liouville equation. Focusing on the quadrupolar echo experiments performed in the nematic phase, the analysis of the transverse relaxation rate has been carried out by considering single-molecule motions and fluctuations of the local director. The main conclusions are: (a) director fluctuations are not relevant on driving the signal relaxation; (b) molecular reorientations about transverse axes control the dynamic regime of the signal relaxation and impose a full slow-motional treatment; (c) the small amplitude tumbling of the molecule within the wells of orientational potential occurs with characteristic times up to the microsecond. The outcome of our analysis has to be taken as indicative of very slow dynamics concerning out-of-plane motions of the molecules. Besides the specific application, this paper also offers the methodological tools to treat the pulsed deuterium NMR experiment in the slow-motional regime of reorientational motions and provides a detailed comparison with the usually employed fast-motional approximation.  相似文献   

4.
Small‐angle bent‐core liquid‐crystalline (LC) molecules based on a 1,2‐bis(phenylethynyl)benzene central core have been synthesized that form banana smectic phases with a ferroelectric B7–antiferroelectric B2 phase sequence upon cooling. The formation of polar, switchable ferro‐/antiferroelectric banana phases indicates that, despite the low core bend angle of approximately 60°, banana smectic phases are still formed with the bend direction parallel to the layer. This study offers significant evidence that shows bent‐core molecules with a 60° bend angle can form the well‐known B2 and B7 banana phases. Consequently, it may lead to the preparation of a wide variety of novel bent molecules with low bend angles that spontaneously form an LC phase with both polarization and chirality.  相似文献   

5.
The structure of poly(diethylsiloxane) (PDES) has been characterized using solid-state NMR of (17)O. The sample studied had a weight-average molecular weight of 2.45 x 10(5). The sample was prepared by utilizing the cationic ring-opening polymerization of (17)O-enriched hexacyclotrisiloxane. Solid-state NMR of (17)O-enriched PDES was measured on the low-temperature beta(1) phase, the high-temperature beta(2) phase, the two-phase system consisting of the liquid crystal and isotropic liquid phase and the isotropic phase. From these data, the molecular structure and dynamics of PDES in the various phases were characterized via the chemical shifts of (17)O, and electric field gradient parameters were determined from NMR and ab initio molecular orbital (MO) calculations. In addition to the solid-state NMR of (1)H, (13)C and (29)Si previously reported on these samples, knowledge of the dynamic behavior of PDES as inferred from the NMR of (17)O in the present study was enhanced significantly. Further, the potential of combining the experimental NMR of (17)O with ab initio MO calculations to characterize the dynamics of polymers containing oxygen is demonstrated.  相似文献   

6.
Biocompatible lipidic formulations: phase behavior and microstructure   总被引:1,自引:0,他引:1  
Biocompatible systems formulated for use in the food, cosmetic, and pharmaceutical fields are characterized. Ternary phase diagrams of mixtures of natural lipids (glycerol trioleate, glycerol monooleate, diglycerol monooleate, and lecithin) and water were investigated by means of optical microscopy in polarized light and by multinuclear NMR spectroscopy. All systems showed a microemulsion region at high oil content and a large area of coexistence of two liquid crystalline (hexagonal and lamellar) phases. 1H and 13C NMR self-diffusion measurements were used to characterize microstructural features of the microemulsions. On water dilution, the two-phase liquid crystalline region transforms into a creamy emulsion area where the droplets of water are stabilized by both the lamellar and the hexagonal phases, as indicated by 2H NMR measurements. Due to the very effective dispersing action of the two liquid crystalline phases, these emulsions show a high stability toward phase separation.  相似文献   

7.
The studies of the gel-to-sol phase transition by the Raman, FT-IR, and 1H NMR methods of the gel made by low molecular weight organogelator 1,2-O-(1-ethylpropylidene)-alpha-D-glucofuranose with toluene as the solvent are reported. The FT-IR spectra revealed the existence of a hydrogen bond network formed by gelator molecules in the crystalline and gel phase. In both phases, the network formation is dominated by the gelator self-interaction. Upon gelation, only one stretching band of infrared absorption modes nualpha, assigned to the O(6)H hydroxyl protons of gelator, is shifted by Deltaupsilonalpha = 25 cm-1, which indicates the involvement of this proton in the interaction with the solvent molecules. The phase transition measurements performed as a function of gelator concentration allowed the calculation of the energy correlated with the transition from gel to solution phase. The obtained value of 72 kJ/mol is the largest one reported up until now for monosaccharide-based gels. The analysis of the temperature measurements of the toluene 1H NMR spectra provides evidence for a different chemical environment of toluene molecules in the gel. The toluene spin-lattice relaxation in bulk and gel indicate that the viscosity is most likely the main factor that influences the dynamics of toluene.  相似文献   

8.
A complete Deuterium NMR study performed on partially deuterated liquid crystalline carbosilane dendrimer is here reported. The dendrimer under investigation shows a SmA phase in a large temperature range from 381 to 293 K, and its mesophasic properties have been previously determined. However, in this work the occurrence of a biphasic region between the isotropic and SmA phases has been put in evidence. The orientational order of the dendrimer, labeled on its lateral mesogenic units, is here evaluated in the whole temperature range by means of (2)H NMR, revealing a peculiar trend at low temperatures (T < 326 K). This aspect has been further investigated by a detailed analysis of the (2)H NMR spectral features, such as the quadrupolar splitting, the line shape, and the line-width, as a function of temperature. In the context of a detailed NMR analysis, relaxation times (T(1) and T(2)) have also been measured, pointing out a slowing down of the dynamics by decreasing the temperature, which determines from one side the spectral changes observed in the NMR spectra, on the other the observation of a minimum in the T(1).  相似文献   

9.
The phase behavior of amphiphiles, e.g., lipids and surfactants, at low water content is of great interest for many technical and pharmaceutical applications. When put in contact with air having a moderate relative humidity, amphiphiles often exhibit coexistence between solid and liquid crystalline phases, making their complete characterization difficult. This study describes a (13)C solid-state NMR technique for the investigation of amphiphile phase behavior in the water-poor regime. While the (13)C chemical shift is an indicator of molecular conformation, the (13)C signal intensities obtained with the CP and INEPT polarization transfer schemes yield information on molecular dynamics. A theoretical analysis incorporating the effect of molecular segment reorientation, with the correlation time τ(c) and order parameter S, shows that INEPT is most efficient for mobile segments with τ(c) < 0.01 μs and S < 0.05, while CP yields maximal signal for rigid segments with τ(c) > 10 μs and/or S > 0.5 under typical solid-state NMR experimental conditions. For liquid crystalline phases, where τ(c) < 0.01 μs and 0 < S < 0.3, the observed CP and INEPT intensities serve as a gauge of S. The combination of information on molecular conformation and dynamics permits facile phase diagram determination for systems with solid crystalline, solid amorphous, anisotropic liquid crystalline, and isotropic liquid (crystalline) phases as demonstrated by experiments on a series of reference systems with known phase structure. Three solid phases (anhydrous crystal, dihydrate, gel), two anisotropic liquid crystalline phases (normal hexagonal, lamellar), and two isotropic liquid crystalline phases (micellar cubic, bicontinuous cubic) are identified in the temperature-composition phase diagram of the cetyltrimethylammonium succinate/water system. Replacing the succinate counterion with DNA prevents the formation of phases other than hexagonal and leads to a general increase of τ(c).  相似文献   

10.
The orientational properties of the banana-shaped liquid crystal 4-chloro-1,3-phenylenebis{4-[4'-(10-undecenyloxy)]benzoyloxy} benzoate (ClPbis11BB) are reported in the nematic phase under the effect of an external magnetic field. A new hypothesis, which states that the central ring of the aromatic core is oriented perpendicularly to the external magnetic field, is proposed. In support of this hypothesis, a series of studies based on (2)H NMR spectroscopy, both in the bulk and in solution, are discussed. (2)H NMR measurements on three selectively deuterium-labelled isotopomers are presented, together with DFT results from B3LYP/cc-pvDz calculations performed on the aromatic core. The rather flat shape of the investigated intramolecular energy surface allows for several different conformations to be populated, the computed magnetic susceptibilities of which are consistent with the proposed hypothesis of peculiar orientation of banana-shaped molecules. Moreover, the orientation of the magnetic susceptibility tensor is shown to be strongly dependent on the internal conformation of the banana-shaped molecules.  相似文献   

11.
The self-assembly, the molecular dynamics, and the kinetics of structure formation are studied in dipole-functionalized hexabenzocoronene (HBC) derivatives. Dipole substitution destabilizes the columnar crystalline phase except for the dimethoxy- and monoethynyl-substituted HBCs that undergo a reversible transformation to the crystalline phase. The disk dynamics are studied by dielectric spectroscopy and site-specific NMR techniques that provide both the time-scale and geometry of motion. Application of pressure results in the thermodynamic phase diagram that shows increasing stability of the crystalline phase at elevated pressures. Long-lived metastability was found during the transformation between the two phases. These results suggest new thermodynamic and kinetic pathways that favor the phase with the highest charge carrier mobility.  相似文献   

12.
Five bis(dimethylsilyl)-m-carborane-siloxane polymers with methyl, phenyl, and 2-cyanoethyl ligands were characterized by (1)H, (11)B, (13)C, and (29)Si nuclear magnetic resonance (NMR) spectroscopy. All relevant chemical shifts are reported, whereas signal assignment was confirmed by 2D NMR spectroscopy. The chemical composition of the polymers was calculated from the (1)H and (29)Si NMR spectra. Only (29)Si NMR spectroscopy was able to quantify the methoxy end group, from which the average molecular weights were calculated. The copolymer Dexsil 300 turned out to have a regular microstructure, whilst the terpolymers Dexsil 400 and Dexsil 410 have only partly regular sequences. (11)B NMR spectroscopy confirmed the m-carborane structure and revealed some low molecular weight impurities.  相似文献   

13.
Solid-state NMR experiments show that the behavior of supported 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid phases depends on the type of support and the phase thickness. A mobile nearly liquid phase is obtained on silica, on the basis of the line widths of the bands in (1)H, (31)P, and (13)C spectra. However, the mobility is somehow restricted, as shown by the possibility of using the cross-polarization technique, although with slow dynamics. On laponite clay, a layered material with a negatively charged surface, a truly solid phase is obtained at low coverage, whereas the increase in ionic liquid loading leads to a second liquid phase, as shown by the presence of two contributions with very different line widths. These two phases seem to coexist without exchange in the NMR time frame. Heteronuclear correlation experiments evidence different relative dispositions of the imidazolium-surface-PF(6) system, with only aromatic protons involved in all the interactions on silica but participation of the benzylic groups (N-CH(3) and/or N-CH(2)) in the case of laponite clay.  相似文献   

14.
This work investigated the nanoconfinement effect on the molecular dynamics and phase transition of confined benzene inside titanate nanotubes with a uniform inner diameter of approximately 5.3 nm. For 13C-enriched organics, the 13C nuclear spin-spin relaxation was demonstrated as a sensitive tool to differentiate molecular translational motion and reorientation and, thus, was shown to be advantageous over the commonly employed 1H and 2H NMR for studying complex phase diagram, specifically, for separating the phase behavior of translational motion and the phase behavior of molecular reorientation. In such an approach, the melting of translational motion of confined benzene was explicitly observed to take place in a broad temperature range below the bulk melting temperature. The abrupt change of the 13C nuclear spin-spin relaxation time of the confined liquid benzene at about 260 K suggested that nanoconfinement induced two topologically distinct liquid phases.  相似文献   

15.
The first translational self-diffusion NMR measurements in the isotropic phase of banana-shaped liquid crystals are reported. In this paper, two banana-shaped mesogens, having a similar molecular structure and showing a nematic phase, have been investigated by means of translational self-diffusion NMR, (2)H NMR spin-spin and (1)H NMR spin-lattice relaxation measurements in the isotropic phase. While (1)H diffusion and (2)H relaxation times reveal a peculiar slow dynamic behaviour of banana-shaped mesogens compared with calamitic mesogens, the (1)H relaxation times seem to be affected by fast dynamics only. The origin of these dynamic features is discussed in terms of overall and internal molecular motions, in the frame of recent speculations concerning the formation of molecular clusters or aggregates in the isotropic phase of banana-shaped liquid crystals.  相似文献   

16.
In bicellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), the transition from isotropic reorientation to partial orientational order, on warming, is known to coincide with a sharp increase in viscosity. In this work, cone-and-plate rheometry, (2)H NMR spectroscopy, and quadrupole echo decay observations have been used to obtain new insights into the dynamics of phases observed in bicellar DMPC/DHPC mixtures. Samples with 25% of the DMPC component deuterated were used to correlate rheological measurements with phase behavior observed by (2)H NMR spectroscopy. Mixtures containing only normal DMPC (DMPC/DHPC) or only chain perdeuterated DMPC (DMPC-d(54)/DHPC) were used to refine rheology and quadrupole echo decay measurements respectively. The viscosity peaked at 4-9 Pa·s, just above the isotropic-to-nematic transition, and then dropped as samples were warmed through the nematic-to-lamellar transition. Quadrupole echo decay times above the nematic-to-lamellar transition were significantly longer than typically observed in the liquid crystalline phase of saturated lipid multilamellar vesicles. This may indicate a damping of slow bilayer undulations resulting from the coupling of opposite bilayer surfaces by DHPC-lined pores.  相似文献   

17.
Solid-state 13C NMR and 2H NMR techniques have been used to investigate structural and dynamic properties of the 1,4-dicyanobutane/urea and 1,5-dicyanopentane/urea 1:1 hydrogen-bonded complexes and the 1,6-dicyanohexane/urea inclusion compound. The pure crystalline phase of urea has also been investigated. The 13C NMR studies have focused on 13C chemical shift anisotropy and second-order quadrupolar effects (arising from 13C-14N interaction) for the urea molecules and the cyano groups of the alpha,omega-dicyanoalkanes. Parameters describing these interactions are derived and are discussed in relation to the known structural properties of these materials. Comparison of 13C chemical shift anisotropies of the cyano carbons and rates of 13C dipolar dephasing suggest that 1,4-dicyanobutane and 1,5-dicyanopentane are effectively static, whereas 1,6-dicyanohexane has greater mobility. 2H NMR line shape analysis for the 1,4-dicyanobutane/urea-d4 and 1,5-dicyanopentane/urea-d4 complexes indicates that the only motion of the urea molecules that is effective on the 2H NMR time scale is a rapid libration about the C=O bond over an angular range of about 26 degrees . For the 1,6-dicyanohexane/urea-d4 inclusion compound, the 2H NMR line shape is consistent with a motion comprising 180 degrees jumps about the C=O bond at rates that are intermediate on the 2H NMR time scale. In addition, rapid libration about the C=O bond also occurs over an angular range of about 20 degrees . The dynamic properties of the urea molecules in these materials are compared with those of urea molecules in other crystalline environments.  相似文献   

18.
The structural and electronic properties of berberine and berberrubine have been studied extensively using density functional theory (DFT) employing B3LYP exchange correlation. The geometries of these molecules have been fully optimized at the B3LYP/6-311G** level. The chemical shift of 1H and 13C resonances in NMR spectra of these molecules have been calculated using the gauge invariant atomic model (GIAO) method as implemented in Gaussian 98. One- and two-dimensional HSQC (1H-13C), HMBC (1H-13C) and ROESY (1H-1H) spectra were recorded at 500 MHz for the berberine molecule in D(2)O solution. All proton and carbon resonances were unambiguously assigned, and inter-proton distances obtained from ten observed NOE contacts. A restrained molecular dynamics (RMD) approach was used to get the optimized solution structure of berberine. The structure of berberine and berberrubine molecules was also obtained using the ROESY data available in literature. Comparison of the calculated NMR chemical shifts with the experimental values revealed that DFT methods produce very good results for both proton and carbon chemical shifts. The importance of the basis sets to the calculated NMR parameters is discussed. It has been found that calculated structure and chemical shifts in the gas phase predicted with B3LYP/6-311G** are in very good agreement with the present experimental data and the measured values reported earlier.  相似文献   

19.
4-Alkoxy benzoic acids belong to an important class of thermotropic liquid crystals that are structurally simple and often used as starting materials for many novel mesogens. 4-Hexyloxybenzoic acid (HBA) is a homologue of the same series and exhibits an enantiotropic nematic phase. As this molecule could serve as an ideal model compound, high resolution (13)C NMR studies of HBA in solution, solid, and liquid crystalline phases have been undertaken. In the solid state, two-dimensional separation of undistorted powder patterns by effortless recoupling (2D SUPER) experiments have been carried out to estimate the magnitude of the components of the chemical shift anisotropy (CSA) tensor of all the aromatic carbons. These values have been used subsequently for calculating the orientational order parameters in the liquid crystalline phase. The CSA values computed by density functional theory (DFT) calculations showed good agreement with the 2D SUPER values. Additionally, (13)C-(1)H dipolar couplings in the nematic phase have been determined by separated local field (SLF) spectroscopy at various temperatures and were used for computing the order parameters, which compared well with those calculated by using the chemical shifts. It is anticipated that the CSA values determined for HBA would be useful for the assignment of carbon chemical shifts and for the study of order and dynamics of structurally similar novel mesogens in their nematic phases.  相似文献   

20.
利用水热合成方法制备正交氮化硼微晶   总被引:1,自引:1,他引:0  
利用水热方法制备了正交氮化硼微晶, 于400 ℃时制备的氮化硼结晶质量较高, 主要物相为正交氮化硼(oBN). 在反应原料中加入水合肼和氯化铵都有利于样品结晶质量的改善和产率的提高. 在合成氮化硼反应过程中, 适当减慢反应体系的升温速率有利于提高oBN的结晶质量和产率, 但是当升温速率过慢时, oBN的稳定性有所降低, 立方氮化硼(cBN)的稳定性则在一定程度上得到提高. 此外, 反应过程中的原料配比对样品的物相及其结晶质量也有很大影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号