首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 20S proteasome is a large multicomponent protease complex. Relatively little is known about the mechanisms that control substrate specificity of its multiple active sites. We present here the crystal structure at 2.95 A resolution of a beta2-selective inhibitor (MB1) bound to the yeast 20S proteasome core particle (CP). This structure is compared to the structure of the CP bound to a general inhibitor (MB2) that covalently modified all three (beta1, beta2, beta5) catalytic subunits. These two inhibitors differ only in their P3 and P4 residues, thereby highlighting binding interactions distal to the active site threonine that control absolute substrate specificity of the complex. Comparisons of the CP-bound structures of MB1, MB2, and the natural products epoxomycin and TMC-95A also provide information regarding general binding modes for several classes of proteasome inhibitors.  相似文献   

2.
BACKGROUND: The proteasome is a large multicatalytic protease complex (700 kDa) involved in a number of highly regulated processes. It has three major catalytic activities: a chymotrypsin-like activity, a trypsin-like activity and a post-glutamyl peptide hydrolyzing (PGPH) activity. To be useful as molecular probes, which could help dissect the cellular functions of the proteasome, inhibitors should be specific for the proteasome, active in vivo and selectively block only one of the three catalytic activities. To date, few inhibitors fulfill these requirements so we set out to make novel proteasome inhibitors that incorporate these characteristics. RESULTS: A panel of amino-terminally acetylated peptide alpha',beta'-epoxyketones with leucine in P1 and various aliphatic or aromatic amino acids in P2-P4 were prepared and evaluated. Most compounds selectively inhibited the chymotrypsin-like activity, while only weakly inhibiting the trypsin-like and PGPH activities. After optimization, one inhibitor, Ac-hFLFL-epoxide, was found to be more potent and selective for the inhibition of the chymotrypsin-like activity than several previously described inhibitors. This inhibitor also exhibited strong in vivo anti-inflammatory activity. CONCLUSIONS: Optimization of amino-terminally acetylated peptide alpha',beta'-epoxyketones furnished a potent proteasome inhibitor, Ac-hFLFL-epoxide, that has an excellent selectivity for the chymotrypsin-like activity. The inhibitor also proved to be a potent antiproliferative and anti-inflammatory agent. The strong in vivo and in vitro activities suggest that this class of proteasome inhibitors could be both molecular probes and therapeutic agents.  相似文献   

3.
4.
Chiral (salen)Al mu-oxo dimer 1 catalyzes the highly enantioselective conjugate addition of carbon-centered nucleophiles to alpha,beta-unsaturated silyl imides. Allyldimethylsilane-substituted imide 4 was identified as an optimal substrate, undergoing addition reactions with a variety of nitrile nucleophiles in high yield and enantiomeric excess. The silicon-containing products are synthetically useful chiral building blocks, as demonstrated by their application to an enantioselective total synthesis of the potent proteasome inhibitor (+)-lactacystin (2). Elaboration of lactam 5a to the natural product was effected in 12 steps and in 11% overall yield and proceeded through an unusual spiro beta-lactone intermediate (11). This compound was found to inhibit the chymotrypsin-like site of the 26S proteasome at similar levels to known inhibitor clasto-lactacystin beta-lactone (omuralide).  相似文献   

5.
The 20S proteasome is a multicatalytic enzyme complex responsible for intracellular protein degradation in mammalian cells. Its antigen level or enzymatic activity in blood plasma are potentially useful markers for various malignant and nonmalignant diseases. We have developed a method for highly selective determination of the 20S proteasome using a Surface Plasmon Resonance Imaging (SPRI) technique. It is based on the highly selective interaction between the proteasome’s catalytic β5 subunit and immobilized inhibitors (the synthetic peptide PSI and epoxomicin). Inhibitor concentration and pH were optimized. Analytical responses, linear ranges, accuracy, precision and interferences were investigated. Biosensors based on either PSI and epoxomicin were found to be suitable for quantitative determination of the proteasome, with a precision of ±10% for each, and recoveries of 102% and 113%, respectively, and with little interference by albumin, trypsin, chymotrypsin, cathepsin B and papain. The proteasome also was determined in plasma of healthy subjects and of patients suffering from acute leukemia. Both biosensors gave comparable results (2860 ng·mL-1 on average for control, and 42300 ng·mL-1 on average for leukemia patients).
Figure
The synthetic peptide aldehyde Z-Ile-Glu(OBut)-Ala-Leu-H (PSI) and a microbial α’,β’ epoxyketone peptide epoxomicin was used to develop SPRI biosensor for the highly selective determination of the 20S proteasome concentration, and to evaluate the sensor applicability for the determination of 20S proteasome in human blood plasma.  相似文献   

6.
7.
The development process for syringolin A analogues having improved proteasome inhibitory and antitumor activity is described. The strategy was to first establish a convergent synthesis of syringolin A using a rare intramolecular Ugi three‐component reaction in the last stage of the synthesis, so as to gain access toa set of structure‐based analogues. The inhibitory activity of chymotrypsin‐like activity of 20S proteasome was largely improved by targeting the S3 subsite of the β5 subunit. Cytotoxic activity was also improved by installing the membrane‐permeable substituent. These biological properties are comparable to those of bortezomib, a clinically used first‐line proteasome inhibitor.  相似文献   

8.
A series of chiral 2,3- and 3,4-methanoamino acid equivalents of stereochemical diversity were designed and synthesized from our chiral cyclopropane units, using a diastereoselective Grignard addition with ( R)- or ( S)- t-butanesulfinyl imines as the key step. These equivalents were converted into the proteasome inhibitor belactosin A and its cis-cyclopropane stereoisomer. The unnatural cis-isomer was shown to be more than twice as potent as belactosin A as a proteasome inhibitor.  相似文献   

9.
BACKGROUND: The 26S proteasome is responsible for most cytosolic proteolysis, and is an important protease in major histocompatibility complex class I-mediated antigen presentation. Constitutively expressed proteasomes from mammalian sources possess three distinct catalytically active species, beta1, beta2 and beta5, which are replaced in the gamma-interferon-inducible immunoproteasome by a different set of catalytic subunits, beta1i, beta2i and beta5i, respectively. Based on preferred cleavage of short fluorogenic peptide substrates, activities of the proteasome have been assigned to individual subunits and classified as 'chymotryptic-like' (beta5), 'tryptic-like' (beta2) and 'peptidyl-glutamyl peptide hydrolyzing' (beta1). Studies with protein substrates indicate a far more complicated, less strict cleavage preference. We reasoned that inhibitors of extended size would give insight into the extent of overlapping substrate specificity of the individual activities and subunits. RESULTS: A new class of proteasome inhibitors, considerably extended in comparison with the commonly used fluorescent substrates and peptide-based inhibitors, has been prepared. Application of the safety catch resin allowed the generation of the target compounds using a solid phase protocol. Evaluation of the new compounds revealed a set of highly potent proteasome inhibitors that target all individual active subunits with comparable affinity, unlike the other inhibitors described to date. Modification of the most active compound, adamantane-acetyl-(6-aminohexanoyl)(3)-(leucinyl)(3)-vinyl-(methyl)-sulfone (AdaAhx(3)L(3)VS), itself capable of proteasome inhibition in living cells, afforded a new set of radio- and affinity labels. CONCLUSIONS: N-terminal extension of peptide vinyl sulfones has a profound influence on both their efficiency and selectivity as proteasome inhibitors. Such extensions greatly enhance inhibition and largely obliterate selectivity towards the individual catalytic activities. We conclude that for the interaction with larger substrates, there appears to be less discrimination of different substrate sequences for the catalytic activities than is normally assumed based on the use of small peptide-based substrates and inhibitors. The compounds described here are readily accessible synthetically, and are more potent inhibitors in living cells than their shorter peptide vinyl sulfone counterparts.  相似文献   

10.
11.
Electrophoretic analysis of phosphorylation of the yeast 20S proteasome   总被引:4,自引:0,他引:4  
The 26S proteasome complex, consisting of two multisubunit complexes, a 20S proteasome and a pair of 19S regulatory particles, plays a major role in the nonlysosomal degradation of intracellular proteins. The 20S proteasome was purified from yeast and separated by two-dimensional gel electrophoresis (2-DE). A total of 18 spots separated by 2-DE were identified as the 20S proteasome subunits by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The alpha2-, alpha4- and alpha7-subunits gave multiple spots, which converged into one spot for each subunit when treated with alkaline phosphatase. The difference of pI between phosphorylated and dephosphorylated spots and their reaction against anti-phosphotyrosine antibody suggested that the alpha2- and alpha4-subunits are phosphorylated either at Ser or at Thr residue, and the alpha7-subunit is phosphorylated at Tyr residue(s). These phosphorylated subunits were analyzed by electrospray ionization-quadrupole time of flight-tandem MS (ESI-QTOF-MS/MS) to deduce the phosphorylation sites. The 20S proteasome has three different protease activities: chymotrypsin-like, trypsin-like and peptidylglutamyl peptide-hydrolyzing activities. The phosphatase treatment increased K(m) value for chymotrypsin-like activity of the 20S proteasome, indicating that phosphorylation may play an important role in regulating the proteasome activity.  相似文献   

12.
A novel enantioselective total synthesis of 20S proteasome inhibitor Salinosporamide A (NPI-0052; 1) is presented. Key features include intramolecular aldol cyclization of 6 to simultaneously generate the three chiral centers of advanced intermediate 5, cyclohexene ring addition using B-2-cyclohexen-1-yl-9-BBN, and inversion of the C-5 stereocenter by oxidation followed by enantioselective enzymatic reduction.  相似文献   

13.
《Chemistry & biology》1998,5(6):307-320
Background: The proteasome is a multicatalytic protease complex responsible for most cytosolic protein breakdown. The complex has several distinct proteolytic activities that are defined by the preference of each for the carboxyterminal (P1) amino acid residue. Although mutational studies in yeast have begun to define substrate specificities of individual catalytically active β subunits, little is known about the principles that govern substrate hydrolysis by the proteasome.Results: A series of tripeptide and tetrapeptide vinyl sulfones were used to study substrate binding and specificity of the proteasome. Removal of the aromatic amino-terminal cap of the potent tripeptide vinyl sulfone proteasome inhibitor 4-hydroxy-3-iodo-2-nitrophenyl-leucinyl-leucinyl-leucine vinyl sulfone resulted in the complete loss of binding and inhibition. Addition of a fourth amino acid (P4) to the tri-leucine core sequence fully restored inhibitory potency. 1251-labeled peptide vinyl sulfones were also used to examine inhibitor binding and to determine the correlation of subunit modification with inhibition of peptidase activity. Changing the amino acid in the P4 position resulted in dramatically different profiles of β-subunit modification.Conclusions: The P4 position, distal to the site of hydrolysis, is important in defining substrate processing by the proteasome. We observed direct correlations between subunit modification and inhibition of distinct proteolytic activities, allowing the assignment of activities to individual β subunits. The ability of tetrapeptides, but not tripeptide vinyl sulfones, to act as substrates for the proteasome suggests there could be a minimal length requirement for hydrolysis by the proteasome. These studies indicate that it is possible to generate inhibitors that are largely specific for individual β subunits of the proteasome by modulation of the P4 and carboxy-terminal vinyl sulfone moieties.  相似文献   

14.
The crystal structures of the yeast 20S proteasome core particle (CP) in complex with Salinosporamides A (NPI-0052; 1) and B (4) were solved at <3 angstroms resolution. Each ligand is covalently bound to Thr1O(gamma) via an ester linkage to the carbonyl derived from the beta-lactone ring of the inhibitor. In the case of 1, nucleophilic addition to the beta-lactone ring is followed by addition of C-3O to the chloroethyl group, giving rise to a cyclic ether. The crystal structures were compared to that of the omuralide/CP structure solved previously, and the collective data provide new insights into the mechanism of inhibition and irreversible binding of 1. Upon opening of the beta-lactone ring, C-3O assumes the position occupied by a water molecule in the unligated enzyme and hinders deacylation of the enzyme-ligand complex. Furthermore, the resulting protonation state of Thr1NH2 deactivates the catalytic N-terminus.  相似文献   

15.
Fluorogenic polyglutamine-containing peptides with five and ten glutamine residues in a row, having a FRET pair of EDANS (fluorophore) and Dabcyl (quencher), are characterized using spectral and mass spectrometric methods. The possibility of their hydrolysis by the 20S proteasome is examined. The kinetic parameters (catalytic efficiency) for these substances are determined. The presence of glycine in the substrate significantly decreases the solubility of the substrate and diminishes the efficiency of hydrolysis with the proteasome.  相似文献   

16.
BACKGROUND: The 26S proteasome contains six highly related ATPases of the AAA family. We have developed a strategy that allows selective inhibition of individual proteasomal ATPases in the intact proteasome. Mutation of a threonine in the active site of Sug1/Rpt6 or Sug2/Rpt4 to a cysteine sensitizes these proteins to inactivation through alkylation by the sulfhydryl modifying agent NEM. Using this technique the individual contributions of Sug1 and Sug2 to proteasome function can be assessed. RESULTS: We show that both Sug1 and Sug2 can be selectively alkylated by NEM in the context of the intact 26S complex and as predicted by structural modeling, this inactivates the ATPase function. Using this technique we demonstrate that both Sug 1 and 2 are required for full peptidase activity of the proteasome and that their functions are not redundant. Kinetic analysis suggests that Sug2 may have an important role in maintaining the interaction between the 19S regulatory complex and the 20S proteasome. In contrast, inhibition of Sug1 apparently decreases peptidase activity of the 26S proteasome by another mechanism. CONCLUSIONS: These results describe a useful technique for the selective inactivation of AAA proteins. In addition, they also demonstrate that the functions of two related proteasomal AAA proteins are not redundant, suggesting differential roles of proteasomal AAA proteins in protein degradation.  相似文献   

17.
侯廷军  章威  徐筱杰 《化学学报》2001,59(8):1184-1189
通过分子动力学模拟研究了MMP-2和hydroxamate抑制剂之间的作用模式。在分子动力学模拟中,对于催化区的锌离子和其共价结合的配体(包括抑制剂和组氨酸)采用了键合的模型。从模拟的结果可以看到,R^1取代基和MMP-2的S1疏水口袋中的部分残基能形成很好的几何匹配,从而可以产生很强的范德华和疏水相互作用。模拟结果也表明,两个抑制剂和MMP-2之间分别能形成5个和8个氢键,抑制剂B比A活性更高的原因就是能够形成更加有利氢键作用模式。在整个模拟过程中,催化锌都能保持好的五配位形式,配位键的长度也处于稳定的状态,预测得到的MMP-2和其抑制剂的相互作用模式对于全新抑制剂的设计提供了非常重要的结构信息。  相似文献   

18.
Proteasomes are therapeutic targets for various cancers and autoimmune diseases. Constitutively expressed proteasomes have three active sites, β1c, β2c, and β5c. Lymphoid tissues also express the immunoproteasome subunits β1i, β2i, and β5i. Rapid and simultaneous measurement of the activity of these catalytic subunits would assist in the discovery of new inhibitors, improve analysis of proteasome inhibitors in clinical trials, and simplify analysis of subunit expression. In this work, we present a cocktail of activity‐based probes that enables simultaneous gel‐based detection of all six catalytic human proteasome subunits. We used this cocktail to develop specific inhibitors for β1c, β2c, β5c, and β2i, to compare the active‐site specificity of clinical proteasome inhibitors, and to demonstrate that many hematologic malignancies predominantly express immunoproteasomes. Furthermore, we show that selective and complete inhibition of β5i and β1i is cytotoxic to primary cells from acute lymphocytic leukemia (ALL) patients.  相似文献   

19.
An improved synthetic route of OPC-29030, the platelet adhesion inhibitor, was established via the diastereoselective oxidation of a chiral non-racemic sulfide (R)-5 to (S(S))-6 by the catalytic oxidation using VO(acac)(2) and cumene hydroperoxide (CHP) in the presence of MS4A. Under the current condition, the diastereoselectivity was not influenced by the presence of moisture, and moderate to high selectivity (72% de) was obtained at -30 degrees C. The obtained sulfoxide, which diastereomeric excess was easily raised by the recrystallization, could successfully lead to OPC-29030.  相似文献   

20.
Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa alpha7-ring and the intact 690 kDa alpha7beta7beta7alpha7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual alpha-subunits only, and it is generally consistent with the known alpha7beta7beta7alpha7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each beta-subunit. Ion mobility measurements of the alpha7-ring and the alpha7beta7beta7alpha7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S proteasome is demonstrated by GEMMA experiments. This study suggests that many elements of the gas phase structure of large protein complexes are preserved upon desolvation, and that methods such as mass spectrometry and ion mobility analysis can reveal structural details of the solution protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号