首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hierarchical supramolecular chiral liquid-crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization-induced chiral self-assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene-containing block copolymer (Azo-BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo-BCP assemblies. The supramolecular chirality of Azo-BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

2.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

3.
Recent advances in the research field of supramolecularly engineered dye aggregates have enabled the design of simple one-dimensional stacks such as fibers and of closed structures such as nanotoroids (nanorings). More complex and advanced supramolecular systems could potentially be designed using a molecule that is able to provide either of these distinct nanostructures under different conditions. In this study, we introduced bulky but strongly aggregating cholesterol units to a scissor-shaped azobenzene dyad framework, which affords either nanotoroids, nanotubes, or 1D fibers, depending on the substituents. This new dyad with two trans-azobenzene arms shows supramolecular polymorphism in its temperature-controlled self-assembly, leading to not only oligomeric nanotoroids as kinetic products, but also to one-dimensional fibers as thermodynamic products. This supramolecular polymorphism can also be achieved via photo-triggered self-assembly, i.e., irradiation of a monomeric solution of the dyad with two cis-azobenzene arms using strong visible light leads to the preferential formation of nanotoroids, whereas irradiation with weak visible light leads to the predominant formation of 1D fibers. This is the first example of a successful light-induced modulation of supramolecular polymorphism to produce distinctly nanostructured aggregates under isothermal conditions.

Introduction of the bulky yet strongly aggregating cholesterol units to an azobenzene dyad lead to a supramolecular polymorphism not only in its temperature-controlled but also in photo-triggered self-assembly, leading to toroids and helical fibers.  相似文献   

4.
The supramolecular polymerization of an acid-sensitive pyridyl-based ligand ( L1 ) bearing a photoresponsive azobenzene moiety was elucidated by mechanistic studies. Addition of trifluoroacetic acid (TFA) led to the transformation of the antiparallel H-bonded fibers of L1 in methylcyclohexane into superhelical braid-like fibers stabilized by H-bonding of parallel-stacked monomer units. Interestingly, L1 dimers held together by unconventional pyridine–TFA N⋅⋅⋅H⋅⋅⋅O bridges represent the main structural elements of the assembly. UV-light irradiation caused a strain-driven disassembly and subsequent aggregate reconstruction, which ultimately led to short fibers. The results allowed to understand the mechanism of mutual influence of acid and light stimuli on supramolecular polymerization processes, thus opening up new possibilities to design advanced stimuli-triggered supramolecular systems.  相似文献   

5.
Functional supramolecular architectures for bottom-up organic nano- and microtechnology are a high priority research topic. We discovered a new recognition algorithm, resulting from the combination of thioalkyl substituents and head-to-head regiochemistry of substitution, to induce the spontaneous self-assembly of sulfur overrich octathiophenes into supramolecular crystalline fibers combining high charge mobility and intense fluorescence. The fibers were grown on various types of surfaces either as superhelices or straight rods depending on molecular structure. Helical fibers directly grown on a field effect transistor displayed efficient charge mobility and intrinsic 'memory effect'. Despite the fact that the oligomers did not have chirality centers, one type of hand-helicity was always predominant in helical fibers, due to the interplay of molecular atropisomerism and supramolecular helicity induced by terminal substituents. Finally, we found that the new sulfur overrich oligothiophenes can easily be prepared in high yields through ultrasound and microwave assistance in green conditions.  相似文献   

6.
The molecular structure of helical supramolecular dendrimers generated from self-assembling dendrons and dendrimers and from self-organizable dendronized polymers was elucidated for the first time by the simulation of the X-ray diffraction patterns of their oriented fibers. These simulations were based on helical diffraction theory applied to simplified atomic helical models, followed by Cerius2 calculations based on their complete molecular helical structures. Hundreds of samples were screened until a library containing 14 supramolecular dendrimers and dendronized polymers provided a sufficient number of helical features in the X-ray diffraction pattern of their oriented fibers. This combination of techniques provided examples of single-9(2) and -11(3) helices, triple-6(1), -8(1), -9(1), and -12(1) helices, and an octa-32(1) helix that were assembled from crownlike dendrimers, hollow and nonhollow supramolecular crownlike dendrimers, hollow and nonhollow supramolecular disklike dendrimers, and hollow and nonhollow supramolecular and macromolecular helicene-like architectures. The method elaborated here for the determination of the molecular helix structure was transplanted from the field of structural biology and will be applicable to other classes of synthetic helical assemblies. The determination of the molecular structure of helical supramolecular assemblies is expected to provide an additional level of precision in the design of helical functional assemblies resembling those from biological systems.  相似文献   

7.
L-Lysine derivatives of viologens form supramolecular assemblies of fibers and ribbons in some aromatic solvents, and the charge separation reaction in these self-assembling systems proceeds with a similar efficiency to the MV2+ system.  相似文献   

8.
In this paper we report the application of bis-(thiosemicarbazonato) Zn(II) complexes as building blocks in the construction of supramolecular transition metal assemblies. We investigated their coordination behaviour towards pyridylphosphine molecules and found these systems comparable to those based on Zn(porphyrin) and Zn(salphen) complexes. Additionally, catalytic experiments and an in situ high-pressure FTIR study of the supramolecular rhodium hydroformylation catalysts, assembled using the bis-(thiosemicarbazonato) Zn(II) complexes, demonstrate their applicability in supramolecular catalysis and their potential for application in other areas of supramolecular chemistry.  相似文献   

9.
Polydopamine (PD) and melanin species are chemically complex systems, the formation and properties of which are incompletely understood. Inspired by the role of functional amyloids in melanin biosynthesis, this paper examines the influences of the supramolecular structure of amyloids on oxidative polymerization of dopamine. Kinetic analyses on the formation of PD species in the presence of hen egg white lysozyme (HEWL) fibers or soluble HEWL revealed that both forms gave rise to the total quantity of PD species, but the rate of their formation could be accelerated only by the amyloid form. PD species formed with HEWL fibers showed a morphology of bundled fibers, whereas those with soluble HEWL had a mesh-like structure. Amyloid fibers of recombinant Pmel17 had properties similar to those of HEWL fibers in modulating PD formation. The results presented here suggest how nature designs functionality with an amyloid structure and can help understand and engineer chemistries of other functional amyloids.  相似文献   

10.
An effective strategy was developed to fabricate the supramolecular hydrogels with high mechanical strength and adjustable thermosensitivity in aqueous systems, in which physical hydrogel precursors were first formed by the inclusion complexation of Pluronic F68/poly(epsilon-caprolactone) block copolymer end-capped with acryloyl groups with alpha-cyclodextrin (alpha-CD) and subsequently in situ UV photo-cross-linking was carried out. In this way, strong supramolecular hydrogels with elastic moduli greater than 100 000 Pa could be created, which is an order of magnitude higher than that previously achieved with related supramolecular hydrogels. Moreover, the stimuli-responsive property of these hydrogels could be tailored by changing the molar feed ratio of alpha-CD to the macromer. By X-ray diffraction and thermogravimetric analyses, the polypseudorotaxane structure of the inclusion complexes in as-obtained hydrogels was confirmed.  相似文献   

11.
基于氢键作用由低分子量凝胶因子形成的超分子水凝胶   总被引:1,自引:0,他引:1  
利用对羟基吡啶及均苯四甲酸合成的超分子单体, 基于分子间氢键作用, 在水中成功地制备出了具有温度响应性的超分子凝胶, 研究了制备条件对凝胶结构的影响.  相似文献   

12.
氢键结合超分子水凝胶的形成与结构调控   总被引:2,自引:1,他引:1  
近年来,依靠单体单元间可逆和高度取向的非共价作用力形成超分子聚合物(supramolecularpolymer)得到广泛关注[1,2].在溶液中,超分子单体单元之间通过非共价键相互作用,形成三维网络结构并将有机溶剂或水包裹形成超分子凝胶[3,4].相对于聚合物凝胶,超分子凝胶具有以下优点.(1)生  相似文献   

13.
Combination of supramolecular chemistry with molecular recognition has been successfully applied to creating large superstructures with a wide variety of morphologies. Control of shapes and patterns of ordered molecular assemblies in nano and micro scales has attracted considerable interest as promising bottom-up technology. It is known, however, that these molecular assembling superstructures are fragile, reflecting the characteristic of the non-covalent interaction, a driving force operating in these molecular systems. In fact, they easily collapse or change by small perturbation in the environmental conditions. Thus, over the last decade, researchers have been seeking possible methods for the immobilization these superstructures. This critical review focuses on recent advances in in situ post-modification under the influence of the molecular assemblies as templates and polymerization of ordered molecular assemblies such as organogel fibers and crystals to preserve their original superstructures and intensify their mechanical strength.  相似文献   

14.
Polymerization-induced chiral self-assembly(PICSA)is an efficient strategy that not only allows the construction of the supramolecular chiral assemblies in a controlled manner but also can regulate the morphology in situ.Herein,a series of azobenzene-containing block copolymer(Azo-BCP)assemblies with tunable morphologies and supramolecular chirality were obtained through the PICSA strategy.The supramolecular chirality of Azo-BCP assemblies could be regulated by carbon dioxide(CO2)stimulus,and completely recovered by bubbling with Ar.A reversible morphology transformation and chiroptical switching process could also be achieved by the alternative 365 nm UV light irradiation and heatingcooling treatment.Moreover,the supramolecular chirality is thermo-responsive and a reversible chiral-achiral switching was successfully realized,which can be reversibly repeated for at least five times.This work provides a feasible strategy for constructing triple stimuli-responsive supramolecular chiral nano-objects in situ.  相似文献   

15.
A comparison of the structures and functions of synthetic and biological supramolecular systems, consideration of the principles of matter sophistication during the evolution, and analysis of the energy profile of the basic hierarchical elements in the structural organization of matter allowed one to conclude that supramolecular systems have their own niche in the above hierarchy and precede biological systems, which are a community of functionally differentiated supramolecular systems formed from biomolecules. Therefore, supramolecular systems can be regarded as a sort of a “bridge” between nonliving and living matter. Other issues of matter evolution were considered.  相似文献   

16.
The artificial regulation of protein functions is essential for the realization of protein-based soft devices, because of their unique functions conducted within a nano-sized molecular space. We report that self-assembled nanomeshes comprising heat-responsive supramolecular hydrogel fibers can control the rotary motion of an enzyme-based biomotor (F(1)-ATPase) in an on/off manner at the single-molecule level. Direct observation of the interaction of the supramolecular fibers with a microbead unit tethered to the F(1)-ATPase and the clear threshold in the size of the bead required to stop ATPase rotation indicates that the bead was physically blocked so as to stop the rotary motion of ATPase. The temperature-induced formation and collapse of the supramolecular nanomesh can produce or destroy, respectively, the physical obstacle for ATPase so as to control the ATPase motion in an off/on manner. Furthermore, this switching of the F(1)-ATPase motion could be spatially restricted by using a microheating device. The integration of biomolecules and hard materials, interfaced with intelligent soft materials such as supramolecular hydrogels, is promising for the development of novel semi-synthetic nano-biodevices.  相似文献   

17.
Supramolecular hydrogels are expected to have applications as novel soft materials in various fields owing to their designable functional properties. Herein, we developed an in situ synthesis of supramolecular hydrogelators, which can trigger gelation of an aqueous solution without the need for temperature change. This was achieved by mixing two precursors, which induced the synthesis of a supramolecular gelator and its instantaneous self‐assembly into nanofibers. We then performed the in situ synthesis of this supramolecular gelator at an oil/water interface to produce nanofibers that covered the surfaces of the oil droplets (nanofiber‐stabilized oil droplets). External stimuli induced fusion of the droplets owing to disassembly of the gelator molecules. Finally, we demonstrated that this stimuli‐induced droplet fusion triggered a synthetic reaction within the droplets. This means that the confined nanofiber‐stabilized droplets can be utilized as stimuli‐responsive microreactors.  相似文献   

18.
The design and synthesis of molecular and supramolecular multiredox systems have been summarized. These systems are of great importance as they can be employed in the next generation of materials for energy storage, energy transport, and solar fuel production. Nature provides guiding pathways and insights to judiciously incorporate and tune the various molecular and supramolecular design aspects that result in the formation of complex and efficient systems. In this review, we have classified molecular multiredox systems into organic and organic-inorganic hybrid systems. The organic multiredox systems are further classified into multielectron acceptors, multielectron donors and ambipolar molecules. Synthetic chemists have integrated different electron donating and electron withdrawing groups to realize these complex molecular systems. Further, we have reviewed supramolecular multiredox systems, redox-active host-guest recognition, including mechanically interlocked systems. Finally, the review provides a discussion on the diverse applications, e. g. in artificial photosynthesis, water splitting, dynamic random access memory, etc. that can be realized from these artificial molecular or supramolecular multiredox systems.  相似文献   

19.
Melamine-linked perylene bisimide dyes (MPBIs) bearing an ethylene or trimethylene group as linker moieties were synthesized, and their self-aggregation and coaggregation with cyanurates through complementary triple hydrogen bonds have been investigated. UV/vis studies revealed that both the MPBIs self-assemble in nonpolar organic solvent through pi-pi stacking interaction between perylene cores, giving self-aggregates with nearly identical thermal stabilities. Upon addition of 1 equiv of cyanurate components, however, the stabilities of the resulting aggregates were dramatically changed between the two systems, suggesting the formation of different types of hydrogen-bonded supramolecular species. Dynamic light scattering and atomic force microscopic studies revealed that the system featuring ethylene linker moieties generates a discrete dimer of MPBI supported by two cyanurate molecules, whereas the system featuring trimethylene linker moieties affords extended supramolecular polymers hierarchically organizing into nanoscopic fibers. These results demonstrate that it is possible to obtain distinct supramolecular species by just changing the number of carbon atoms at the linker moieties of MPBI components. The present strategy for the fabrication of discrete or polymeric supramolecular assemblies should be applicable to other functional pi-conjugated molecules.  相似文献   

20.
Constructing new and versatile self‐assembling systems in supramolecular chemistry is much like the development of new reactions or new catalysts in synthetic organic chemistry. As one such new technology, conventional supramolecular assembly systems have been combined with microflow techniques to control intermolecular or interpolymer interactions through precise regulation of a flowing self‐assembly field. The potential of the microflow system has been explored by using various simple model compounds. Uniform solvent diffusion in the microflow leads to rapid activation of molecules in a nonequilibrium state and, thereby, enhanced interactions. All of these self‐assembly processes begin from a temporally activated state and proceed in a uniform chemical environment, forming a synchronized cluster and resulting in effective conversion to supramolecules, with precise tuning of molecular (or polymer) interactions. This approach allows the synthesis of a variety of discrete microstructures (e.g., fibers, sheets) and unique supramolecules (e.g., hierarchical assemblies, capped fibers, polymer networks, supramolecules with time‐delayed action) that have previously been inaccessible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号