首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new bistatic lidar was developed for measuring water cloud particle size at the base of lower clouds. The lidar uses a pulsed Nd:YAG laser at 532 nm and a receiver having a polarization analyzer located at a suitable scattering angle. Cloud particle size (mode radius of the assumed size distribution) was derived from the ratio of the polarization components of the scattered light based on the single scattering Mie theory. The experiment was performed on board the research vessel Mirai in the northwestern Pacific. Particle size at the bottom of maritime cumulus and stratus was measured, and the difference between the internal structures of cumulus and stratus was observed. The effect of multiple scattering was studied by changing the observing scattering angle. The effect was not significant when the penetration depth was less than 50 m.  相似文献   

2.
Lidar return signals are studied for a micro-pulse lidar under sky conditions with multi-layer clouds. From theoretical considerations on the lidar signal-to-noise ratio, it is estimated that the maximum cloud optical thickness detectable is about 3.7. This result reasonably agrees with the actual multi-layer cloud data obtained from observations in Sukhothai, Thailand. Deviations from theoretical prediction, however, are found for a geometrically thin but dense cloud, and for a moderately concentrated but geometrically thick cloud. The effect of multiple scattering is also discussed.  相似文献   

3.
A fast Monte Carlo simulation scheme is developed to assess the impact of multiple scattering on space-based lidar backscattering depolarization measurements. The specific application of our methodology is to determine cloud thermodynamic phase from satellite-based lidar depolarization measurements. Model results indicate that multiple scattering significantly depolarizes backscatter return from water clouds. Multiple scattering depolarization is less significant for non-spherical particles. There are sharp contrasts in the depolarization profile between a layer of spherical particles and a layer of non-spherical particles. Although it is not as obvious as ground-based lidar observations, it is likely that we can identify cloud phase not only for a uniform cloud layer, but also for overlapping cloud layers where one layer contains ice and the other water droplets.  相似文献   

4.
In this paper, we calculate multiply scattered lidar signals with Monte Carlo method for measuring optical depth (extinction coefficient), effective size of water droplets, and liquid water content of clouds, and present algorithms that implement our method. We calculated multiply scattered lidar signals for various water droplet sizes and liquid water contents using a Monte Carlo method. A simple correspondence between water droplet optical depth and the degree of polarization in a modified gamma size distribution (C1 cloud) is found. We also calculated the degree of polarization of a lidar signal for a given liquid water content, finding that the degree of polarization is only dependent on optical depth. Since the Raman lidar signal of liquid water depends on the total volume of the water droplet, the effective radius of the water droplet can thus be recovered from the degree of polarization of the lidar signal and the Raman signal of the liquid water.  相似文献   

5.
The concept of a pulsed bistatic lidar for measuring water cloud particle size is presented. The method uses a two-color laser and a receiver with a polarization analyzer located at a suitable scattering angle. The dependence of Mie scattering on scattering angle, wavelength, and polarization is used to derive water cloud droplet size. The measurement was simulated for the C1 and C2 clouds, and the technique for determining mode radius was studied. The result shows the lidar system with a two-wavelength laser (1064 nm and 532 nm) and a dual-polarization receiver fixed at a scattering angle of around 178 deg can be used to measure a cloud particle size (mode radius) of 4 to 12 μm. Evaluation of the effect of multiple scattering showed that the method can be applied not only for the measurement at the cloud base but also in the cloud where multiple scattering is not negligible.  相似文献   

6.
A numerical experiment is performed to obtain the polarization characteristics of signals of a monostatic lidar intended for homogeneous cloud sensing. It is assumed that clouds consist of monodisperse randomly-oriented hexagonal ice crystals. To solve the vector radiative transfer equation, the light scattering phase matrices, preliminary calculated with the help of the beam splitting technique, are used as input data. The formation of the polarization structure of multiply scattered background signal component is studied for different scattering orders depending on crystal shapes and sizes and optical and geometrical conditions of the experiment.  相似文献   

7.
Measurements from depolarized lidars provide a promising method to retrieve both cloud and aerosol properties and a versatile complement to passive satellite-based sensors. For lidar observations of clouds and aerosols, multiple scattering plays an important role in the scattering process. Monte Carlo simulations are carried out to investigate the sensitivity of lidar backscattering depolarization to cloud and aerosol properties. Lidar parameters are chosen to be similar to those of the upcoming space-based CALIPSO lidar. Cases are considered that consist of a single cloud or aerosol layer, as well as a case in which cirrus clouds overlay different types of aerosols. It is demonstrated that besides thermodynamic cloud phase, the depolarized lidar signal may provide additional information on ice or aerosol particle shapes. However, our results show little sensitivity to ice or aerosol particle sizes. Additionally, for the case of multiple but overlapping layers involving both clouds and aerosols, the depolarized lidar contains information that can help identify the particle properties of each layer.  相似文献   

8.
The main features of a Monte Carlo code developed to deal with polarization of lidar returns from water clouds in multiple scattering regime are described. The paper presents an example of results pertaining to a stratified cloud structure, and a series of comparisons of calculation results with measurements carried out in the laboratory. For double scattering a comparison of Monte Carlo results with those of an analytical formula is also given.Presented at the 7th International Workshop on Multiple Scattering Lidar/Light Experiments (MUSCLE7), July 21–23 1994, Chiba, Japan.  相似文献   

9.
Although it has long been recognized that the effects of photon multiple scattering generally need to be accounted for in the analysis of lidar cloud returns, this is a difficult problem and current approaches are still rudimentary. The multiple scattering process is controlled by the size of the lidar beamwidth and the distance to the cloud, which jointly determine the lidar footprint, but cloud microphysical content (i.e., particle size, concentration, and shape) exerts a strong influence on the range distribution and depolarization of the returned energy. Since clouds are inherently inhomogeneous with height, it is our premise that vertically homogeneous cloud simulations based on idealized particle size distributions lead to misleading results. We offer a more realistic approach based on the contents of growing water droplet clouds predicted by a sophisticated adiabatic cloud model, which are offered for use as new standard vertically-inhomogeneous cloud models. Lidar returned signal and depolarization profiles derived from our analytical double-scattering method are given for inter-comparison purposes.Presented at the 7th International Workshop on Multiple Scattering Lidar/Light Experiments (MUSCLE7), July 21–23 1994, Chiba, Japan.  相似文献   

10.
Cirrus clouds play an important role in the climate through their optical and microphysical properties. The problem with measuring optical properties of these clouds can be partially addressed by using lidar systems. This paper presents a new model for describing the multiple scattering contribution to the backscatter signal measured by the lidar system. The new lidar equation introduced this way, expresses the backscatter signal in terms of a polynomial function of the cloud scattering coefficient. Cloud optical properties such as the extinction coefficient and lidar ratio can be deduced from the new proposed lidar equation. Moreover, some cloud microphysical properties can also be inferred from these optical properties. The method is applied to lidar data collected by the micropulsed lidar operating at Nauru under the auspices of the US Department of Energy ARM program.  相似文献   

11.
A Monte Carlo-based evaluation of the multiple-scattering influence on ground-based Raman lidar measurements is presented. The lidar returns from cirrus clouds are analyzed in order to evaluate vertical profiles of the extinction and backscattering coefficients. Results show that for the typical cirrus cloud, the presence of the multiple scattering can lead to an underestimation of the extinction coefficient by as large as 200% whereas the backscattering coefficient is almost unaffected for the Raman lidar technique. An algorithm to select one or a set of phase functions which fit to the lidar data is also presented. It is an iterative procedure based on Monte Carlo scattering simulation. By comparison of the experimental value of the lidar ratio, corrected for the multiple scattering influence, and the phase function used in the Monte Carlo simulation, one can determine a suitable phase function. The validity and sensitivity of the algorithm have been demonstrated by applying it to simulated cases. The application to some real cases indicates that our procedure allows for the establishing of a practical scattering model for the cirrus clouds.  相似文献   

12.
We present a semi-analytical approach to determine angular patterns of a polarized intensity that form lidar signals from multiply scattering media registered by a monostatic multiple-field-of-view receiver or CCD camera for any polarization state of incident light and any analyzer state at a receiver. Multiply scattering media with a highly forward elongated phase functions are considered. The model of lidar signal formation includes the single near-backscattering and small-angle multiple scattering of light. The developed approach allows computation and analysis of polarized images, including the Mueller matrix images, formed by the laser light backscattered by multiply scattering media, for example, from atmospheric clouds, ocean waters, tissue, etc.  相似文献   

13.
Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces.Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude).This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars.This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined.This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.  相似文献   

14.
A radiative transfer calculation of the EM radiation through an aerosol cloud is presented. The effects taken into account are elastic and inelastic scattering of the incident radiation and self-emission by the aerosol cloud. The elastic scattering effects include multiple scattering of the incident photons. We describe the model and calculational procedure based on the multiple scattering approach. The results of the present model are compared with other models for the two given aerosol clouds.  相似文献   

15.
Hu Y  Liu Z  Winker D  Vaughan M  Noel V  Bissonnette L  Roy G  McGill M 《Optics letters》2006,31(12):1809-1811
An empirical relationship is derived between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds measured by backscatter lidar. This relationship is shown to hold for clouds having a wide range of extinction coefficients, mean droplet sizes, and droplet size distribution widths. The relationship is also shown to persist for various instrument fields of view and for measurements made within broken cloud fields. The results obtained from the Monte Carlo simulations are verified by using multiple-field-of-view lidar measurements. For space-based lidars equipped to measure linear depolarization ratios, this new relationship can be used to accurately assess signal perturbations due to multiple scattering within nonprecipitating water clouds.  相似文献   

16.
孙贤明  肖赛  王海华  万隆  申晋 《物理学报》2015,64(18):184204-184204
基于辐射传输理论, 利用蒙特卡罗方法模拟了无限窄(冲击函数)准直光束入射到典型水云以及冰水双层云时的后向散射特性, 进而将得到的冲击响应与高斯光束卷积, 得到高斯光束在云层中传输的多次散射特性. 文中给出了两种波束入射时水云以及冰水双层云的反射函数随径向r和天顶角α的变化关系, 并给出了光强在云层内部的二维分布图. 计算结果表明, 高斯光束入射时, 云层反射函数的特点与无限窄准直光束入射时有较大区别. 因此在利用激光雷达进行云层探测时需要考虑激光的散斑, 文中的方法可以为此提供理论依据.  相似文献   

17.
The Monte Carlo cloud scattering forward model (McClouds_FM) has been developed to simulate limb radiative transfer in the presence of cirrus clouds, for the purposes of simulating cloud contaminated measurements made by an infrared limb sounding instrument, e.g. the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). A reverse method three-dimensional Monte Carlo transfer model is combined with a line-by-line model for radiative transfer through the non-cloudy atmosphere to explicitly account for the effects of multiple scattering by the clouds. The ice cloud microphysics are characterised by a size distribution of randomly oriented ice crystals, with the single scattering properties of the distribution determined by accurate calculations accounting for non-spherical habit.A comparison of McClouds_FM simulations and real MIPAS spectra of cirrus shows good agreement. Of particular interest are several noticeable spectral features (i.e. H2O absorption lines) in the data that are replicated in the simulations: these can only be explained by upwelling tropospheric radiation scattered into the line-of-sight by the cloud ice particles.  相似文献   

18.
三波长激光雷达拟合卷云的粒子形状   总被引:1,自引:0,他引:1  
卷云在全球出现的概率可达30%,其散射特性在气候模式、光辐射传输和遥感领域都具有非常重要的意义。卷云的散射特性主要由冰晶粒子形状、尺度谱、折射率等因素所决定。利用355, 532和1 064 nm三个波长激光雷达数据反演卷云的后向散射系数颜色比,利用模拟计算获得不同形状冰晶粒子的卷云在上述三个波长上的后向散射系数颜色比,通过拟合得出被测卷云的冰晶粒子形状。拟合结果表明,合肥上空卷云中冰晶粒子大部分可能呈聚合物状。  相似文献   

19.
成都地区中低云层的激光雷达探测   总被引:2,自引:0,他引:2  
报道了应用Mie散射激光雷达探测云层的实验.利用改进的Klett反演算法对所测雷达回波信号反演获得大气消光系数分布,进一步求出云层高度、厚度及光学厚度.研究了云底高度和云层厚度在不同天气下的变化情况.获得了成都地区云层的一些重要信息,并对所得结果进行了分析讨论.  相似文献   

20.
A method for estimating optical properties of dusty cloud   总被引:1,自引:0,他引:1  
Based on the scattering properties of nonspherical dust aerosol, a new method is developed for retrieving dust aerosol optical depths of dusty clouds. The dusty clouds are defined as the hybrid system of dust plume and cloud. The new method is based on transmittance measurements from surface-based instruments multi-filter rotating shadowband radiometer (MFRSR) and cloud parameters from lidar measurements. It uses the difference of absorption between dust aerosols and water droplets for distinguishing and estimating the optical properties of dusts and clouds, respectively. This new retrieval method is not sensitive to the retrieval error of cloud properties and the maximum absolute deviations of dust aerosol and total optical depths for thin dusty cloud retrieval algorithm are only 0.056 and 0.1, respectively, for given possible uncertainties. The retrieval error for thick dusty cloud mainly depends on lidar-based total dusty cloud properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号