首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GREEN FLUORESCENT PROTEIN   总被引:4,自引:0,他引:4  
Abstract— Several bioluminescent coelenterates use a secondary fluorescent protein, the green fluorescent protein (GFP), in an energy transfer reaction to produce green light. The most studied of these proteins have been the GFPs from the jellyfish Aequorea victoria and the sea pansy Renilla reniformis. Although the proteins from these organisms are not identical, they are thought to have the same chro-mophore, which is derived from the primary amino acid sequence of GFP. The differences are thought to be due to changes in the protein environment of the chromophore. Recent interest in these molecules has arisen from the cloning of the Aequorea gfp cDNA and the demonstration that its expression in the absence of other Aequorea proteins results in a fluorescent product. This demonstration indicated that GFP could be used as a marker of gene expression and protein localization in living and fixed tissues. Bacterial, plant and animal (including mammalian) cells all express GFP. The heterologous expression of the gfp cDNA has also meant that it could be mutated to produce proteins with different fluorescent properties. Variants with more intense fluorescence or alterations in the excitation and emission spectra have been produced.  相似文献   

2.
Proteins homologous to green fluorescent protein (GFP) span most of the visible spectrum, offering indispensable tools for live cell imaging. Structural transformations, such as posttranslational autocatalytic and photo-induced modifications, chromophore isomerization, and rearrangements in its environment underlie the unique capacity of these proteins to tune their own optical characteristics. A better understanding of optical self-tuning mechanisms would assist in the engineering of more precisely adapted variants and in expanding the palette of GFP-like proteins to the near-infrared region. The latest advances in this field shed light upon multiple features of protein posttranslational chemistry, and establish some important basic principles about the interplay of structure and spectral properties in the GFP family.  相似文献   

3.
Recent progress in generating a vast number of drug targets through genomics and large compound libraries through combinatorial chemistry have stimulated advancements in drug discovery through the development of new high throughput screening (HTS) methods. Automation and HTS techniques are also highly desired in fields such as clinical diagnostics. Luminescence-based assays have emerged as an alternative to radiolabel-based assays in HTS as they approach the sensitivity of radioactive detection along with ease of operation, which makes them amenable to miniaturization. Luminescent proteins provide the advantage of reduced reagent and operating costs because they can be produced in unlimited amounts through the use of genetic engineering tools. In that regard, the use of two naturally occurring and recombinantly produced luminescent proteins from the jellyfish Aequorea victoria, namely, aequorin and the green fluorescent protein (GFP), has attracted attention in a number of analytical applications in diverse research areas. Aequorin is naturally bioluminescent and has therefore, virtually no associated background signal, which allows its detection down to attomole levels. GFP has become the reporter of choice in a variety of applications given that it is an autofluorescent protein that does not require addition of any co-factors for fluorescence emission. Furthermore, the generation of various mutants of GFP with differing luminescent and spectral properties has spurred additional interest in this protein. In this review, we focus on the use of aequorin and GFP in the development of highly sensitive assays that find applications in drug discovery and in high throughput analysis.  相似文献   

4.
Recent progress in generating a vast number of drug targets through genomics and large compound libraries through combinatorial chemistry have stimulated advancements in drug discovery through the development of new high throughput screening (HTS) methods. Automation and HTS techniques are also highly desired in fields such as clinical diagnostics. Luminescence-based assays have emerged as an alternative to radiolabel-based assays in HTS as they approach the sensitivity of radioactive detection along with ease of operation, which makes them amenable to miniaturization. Luminescent proteins provide the advantage of reduced reagent and operating costs because they can be produced in unlimited amounts through the use of genetic engineering tools. In that regard, the use of two naturally occurring and recombinantly produced luminescent proteins from the jellyfish Aequorea victoria, namely, aequorin and the green fluorescent protein (GFP), has attracted attention in a number of analytical applications in diverse research areas. Aequorin is naturally bioluminescent and has therefore, virtually no associated background signal, which allows its detection down to attomole levels. GFP has become the reporter of choice in a variety of applications given that it is an autofluorescent protein that does not require addition of any co-factors for fluorescence emission. Furthermore, the generation of various mutants of GFP with differing luminescent and spectral properties has spurred additional interest in this protein. In this review, we focus on the use of aequorin and GFP in the development of highly sensitive assays that find applications in drug discovery and in high throughput analysis.  相似文献   

5.
In the ground state of the highly conjugated green fluorescent protein (GFP), the chromophore should be planar. However, numerous crystal structures of GFP and GFP-like proteins have been reported with slightly twisted chromophores. We have previously shown that the protein cavity surrounding the chromophore in wild-type GFP is not complementary with a planar chromophore. This study shows that the crystal structure of wild-type GFP is not an anomaly: most of the GFP and GFP-like proteins in the protein databank have a protein matrix that is not complementary with a planar chromophore. When the pi-conjugation across the ethylenic bridge of the chromophore is removed the protein matrix will significantly twist the freely rotating chromophore from the relatively planar structures found in the crystal structures. The possible consequences of this nonplanar deformation on the photophysics of GFP are discussed. A volume analysis of the cis-trans-isomerization of HBDI, a GFP chromophore model compound, reveals that its hula-twist motion is volume conserving. This means that, if the GFP chromophore or GFP chromophore model compounds undergo a cis-trans-isomerization in a volume-constricting medium, such as a protein matrix or viscous liquid, it will probably isomerize by means of a HT-type motion.  相似文献   

6.
Abstract— Spectral properties of guanidine-denaturated and pronase-digested green-fluorescent proteins (GFP) from two species of bioluminescent coelenterates have been investigated. Spectrophotometric titrations of Renilla and Aequorea GFP, following denaturation in 6 M guanidine HCl at elevated temperature, revealed identical absorption peaks in acid (383–384 nm) and in alkali (447–448 nm) and a single isosbestic point in the visible region at 405 nm. Both proteins exhibited a spectrophotometric pK. of 8.1 in guanidine -HCl. Pronase digestion of the heat-denaturated GFP's generated a methanol-soluble blue-fluorescent peptide with identical fluorescence emission spectra (λmax= 430 nm, uncorrected; φf1= 0.003) for both coelenterate species. These data suggest that the large absorption differences between native Renilla and Aequorea GFP molecules result from unique protein environments imported to a common chromophore.  相似文献   

7.
The mechanism of the chromophore maturation in members of the green fluorescent protein (GFP) family such as DsRed and other red fluorescent and chromoproteins was analyzed. The analysis indicates that the red chromophore results from a chemical transformation of the protonated form of the GFP-like chromophore, not from the anionic form, which appears to be a dead-end product. The data suggest a rational strategy to achieve the complete red chromophore maturation utilizing substitutions to favor the formation of the neutral phenol in GFP-like chromophore. Our approach to detect the neutral chromophore form expands the application of fluorescent timer proteins to faster promoter activities and more spectrally distinguishable fluorescent colors. Light sensitivity found in the DsRed neutral form, resulting in its instant transformation to the mature red chromophore, could be exploited to accelerate the fluorescence acquisition.  相似文献   

8.
We studied the effects of fluorescent labeling on the isoelectric points (pI values) of proteins using capillary isoelectric focusing with laser-induced fluorescence detection (cIEF-LIF). Specifically, we labeled green fluorescent protein (GFP) from the jellyfish Aequorea victoria with the fluorogenic dye 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ). cIEF-LIF was used to monitor the native fluorescence of GFP and showed pI changes in GFP's FQ-labeled products. Multiple labeling of GFP with FQ produced a series of products with pI values shifted towards a low pH. We verified cIEF-LIF results with traditional slab gel IEF. Our cIEF-LIF technique can routinely detect 10(-11) M of FQ-labeled protein, whereas traditional slab gel IEF with silver stain detection gives detection limits of 10(-7) M in the same samples.  相似文献   

9.
The Aequorea victoria green fluorescent protein (GFP) creates a fluorophore from its component amino acids Ser65, Tyr66, and Gly67 through a remarkable post-translational modification, involving spontaneous peptide backbone cyclization, dehydration, and oxidation reactions. Here we test and extend the understanding of fluorophore biosynthesis by coupling chemical reduction and anaerobic methodologies with kinetic analyses and protein structure determination. Two high-resolution structures of dithionite-treated GFP variants reveal a previously uncharacterized enolate intermediate form of the chromophore that is viable in generating a fluorophore (t1/2 = 39 min-1) upon exposure to air. Isolation of this enolate intermediate will now allow specific probing of the rate-limiting oxidation step for fluorophore biosynthesis in GFP and its red fluorescent protein homologues. Such targeted characterizations may lead to the design of faster maturing proteins with enhanced applications in biotechnology and cell biology. Moreover, our results reveal how the GFP protein environment mimics enzyme systems, by stabilizing an otherwise high energy enolate intermediate to achieve its post-translational modification.  相似文献   

10.
While green fluorescent proteins (GFPs) have been widely used as tools in biochemistry, cell biology, and molecular genetics, novel red fluorescent proteins (RFPs) with red fluorescence emission have also been identified, as complements to the existing GFP technology. The unusual spectrophotometric and fluorescence properties of GFPs and RFPs are controlled by the protonation states and possibly cis/trans isomerization within their chromophores. In this work, we have investigated the electronic structures, liquid structures, and solvent shifts of the possible neutral and anionic protonated states and the cis/trans isomerization of a RFP chromophore model compound HBMPI in aqueous solutions. The calculations reproduced the experimental absorption solvatochromatic shifts of dilute HBMPI in water under neutral and anionic conditions. Unlike the GFP chromophore, the RFP chromophore model compound HBMPI in basic solution can only adopt a conformation where the C=C bond between the bridge group and the imidazolinone ring and the C-C bond between the imidazolinone and ethylene groups exist in cis and trans conformations, respectively. Moreover, the solvent-solute hydrogen-bonding interactions are found to contribute significantly to the total solvent shifts of pi-pi* excitations of aqueous HBMPI solutions, signifying the importance of protein environment in the determination of the conformation of the chromophores in red fluorescent proteins.  相似文献   

11.
The recent breakthroughs in genomics and proteomics and improvements of optical methods have made it possible to obtain localized, real-time information on intracellular proteins dynamics, through dynamic three-dimensional (3D) maps of the living cell with nanometric resolution of individual molecules. On one side, brighter variants of the Green Fluorescence Protein (GFP) have been engineered that have different excitation and/or emission spectra that better match available light sources. Like their parent molecule, these variants retain their fluorescence when fused to heterologous proteins on the N- and C- terminals, and this binding generally does not affect the functionality of the tagged protein leading the way to their use as an intracellular reporter. On the other side, optical methods have been improved to allow reaching the level of single-molecule detection inside living cells. Nevertheless some limitations exist for the use of GFP variants for probing 3D conformational changes of proteins. First, these variants are fused to the N and/or C terminals of the studied protein, which are generally not the best location to detect conformational changes resulting from the binding to other proteins or enzyme substrates. Then their own relatively large size makes them unusable for tagging small proteins. These limitations suggest that new tagging processes, permitting the location of the right fluorescent markers at the right places, must be found to built up inter- and/or intra-molecular rulers allowing one to monitor conformational changes resulting from intracellular protein-protein, protein-membrane, and enzyme-substrate binding. These specific locations can be obtained from in vitro studies of 3D conformational changes that occur during protein docking.  相似文献   

12.
We report on the dynamics of fluorescence from individual molecules of a mutant of the wild-type green fluorescent protein (GFP) from Aequorea victoria, super folder GFP (SFGFP). SFGFP is a novel and robust variant designed for in vivo high-throughput screening of protein expression levels. It shows increased thermal stability and is able to retain its fluorescence when fused to poorly folding proteins. We use a recently developed single-molecule technique which combines fluorescence-fluctuation spectroscopy and time-correlated single photon counting in order to characterize the photophysical properties of SFGFP under one- (OPE) and two- (TPE) photon excitation conditions. We use Rhodamine 110 as a model chromophore to validate the methodology and to explain the single-molecule results of SFGFP. Under OPE, single SFGFP molecules undergo fluorescence flickering on the time scale of micros and tens of micros due to triplet formation and ground-state protonation-deprotonation, respectively, as demonstrated by excitation intensity- and pH-dependent experiments. OPE single-molecule fluorescence lifetimes indicate heterogeneity in the population of SFGFP, indicating the presence of the deprotonated I and B forms of the SFGFP chromophore. TPE of single SFGFP molecules results in the photoconversion of the chromophore. TPE of single SFGFP molecules show fluorescence flickering on the time scale of micros due to triplet formation. A flicker connected with protonation-deprotonation of the SFGFP chromophore is detected only at low pH. Our results show that SFGFP is a promising fusion reporter for intracellular applications using OPE and TPE microscopy.  相似文献   

13.
Chromophore structures inspired by natural green fluorescent protein (GFP) play an important role in the field of bio-imaging. In this work, photochemical properties of a new class of GFP-like chromophores are investigated using computational approaches. Thermodynamically stable isomers are identified in vacuum and in solvent. Spectral Stokes shifts are computed and compared to experiments. An inverted solvatochromic shift between absorption and emission emerging in this new class of GFP-like chromophores is observed, and attributed to the stabilized charge transfer and inhibited rotational structural reorganization in solvent.  相似文献   

14.
Calcium‐activated photoproteins, such as aequorin, have been used as luminescent Ca2+ indicators since 1967. After the cloning of aequorin in 1985, microinjection was substituted by its heterologous expression, which opened the way for a widespread use. Molecular fusion of green fluorescent protein (GFP) to aequorin recapitulated the nonradiative energy transfer process that occurs in the jellyfish Aequorea victoria, from which these two proteins were obtained, resulting in an increase of light emission and a shift to longer wavelength. The abundance and location of the chimera are seen by fluorescence, whereas its luminescence reports Ca2+ levels. GFP‐aequorin is broadly used in an increasing number of studies, from organelles and cells to intact organisms. By fusing other fluorescent proteins to aequorin, the available luminescence color palette has been expanded for multiplexing assays and for in vivo measurements. In this report, we will attempt to review the various photoproteins available, their reported fusions with fluorescent proteins and their biological applications to image Ca2+ dynamics in organelles, cells, tissue explants and in live organisms.  相似文献   

15.
Catenanes are intriguing molecular architectures with unique properties. Herein, we report the cellular synthesis of protein catenanes containing folded structural domains, aided by synergy between p53 dimerization and SpyTag/SpyCatcher chemistry. Concatenation of green fluorescent protein (GFP) was shown to increase chemical stability without disrupting the fluorescence properties, and concatenated dihydrofolate reductase (DHFR) exhibited a melting temperature around 4 °C higher and catalytic activity around 27 % higher than the wild‐type DHFR and the cyclic/linear controls. Catenation also confers considerable proteolytic resistance on DHFR. The results suggest that catenation could enhance both the stability and activity of folded proteins, thus making topology engineering an attractive approach for tailoring protein properties without varying their native sequences.  相似文献   

16.

Background  

The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region.  相似文献   

17.
In recent years the class of known fluorescent proteins (FPs) has dramatically expanded as an ever-increasing numbers of variants and homologs of the green fluorescent protein (GFP) from Aequorea jellyfish have been either engineered in the lab or discovered in other marine organisms. The red fluorescent protein (RFP) from Discosoma coral (also known as dsFP583 and DsRed) has proven to be a particularly fruitful progenitor of variants with biochemical and spectroscopic properties conducive to applications in live cell imaging. We have investigated the tolerance of an engineered monomeric descendent of Discosoma RFP, known as mCherry, towards peptide insertion and circular permutation. Starting from a random library of insertion variants, we identified six genetically distinct sites localized in three different loops where a sequence of five residues could be inserted without abolishing the ability of the protein to form its intrinsic red fluorescent chromophore. For each of these insertion variants, a corresponding circular permutation variant was created in which the original N- and C-termini were connected by a six-residue linker and new termini were introduced at the site of the insertion. All six circular permutation variants had significantly diminished brightness relative to the analogous insertion variants. The most promising circular permutation variant has termini at the position corresponding to residue 184 of mCherry and retains 37% of the intrinsic fluorescent brightness of mCherry. These circularly permuted variants may serve as the foundation for construction of genetically encoded Ca2+ sensors analogous to the previously reported camgaroo, pericam and G-CaMP sensors based on variants of Aequorea GFP.  相似文献   

18.
The inhibition of the protein function for therapeutic applications remains challenging despite progress these past years. While the targeting application of molecularly imprinted polymer are in their infancy, no use was ever made of their magnetic hyperthermia properties to damage proteins when they are coupled to magnetic nanoparticles. Therefore, we have developed a facile and effective method to synthesize magnetic molecularly imprinted polymer nanoparticles using the green fluorescent protein (GFP) as the template, a bulk imprinting of proteins combined with a grafting approach onto maghemite nanoparticles. The hybrid material exhibits very high adsorption capacities and very strong affinity constants towards GFP. We show that the heat generated locally upon alternative magnetic field is responsible of the decrease of fluorescence intensity.  相似文献   

19.
Green fluorescent proteins (GFPs) have become powerful markers for numerous biological studies due to their robust fluorescence properties, site-specific labeling, pH sensitivity, and mutations for multiple-site labeling. Fluorescence correlation spectroscopy (FCS) studies have indicated that fluorescence blinking of anionic GFP mutants takes place on a time scale of 45-300 ms, depending on pH, and have been attributed to external proton transfer. Here we present experimental evidence indicating that conformational change in the protein &beta-barrel is a determining step for the external protonation of GFP-S65T (at low pH) using time-resolved fluorescence and polarization anisotropy measurements. While the average anionic fluorescence lifetime of GFP-S65T is reduced by approximately 18% over a pH range of 3.6-10.0, the fluorescence polarization anisotropy decays mostly as a single exponential with a rotational time of phi = 17 +/- 1 ns, which indicates an intact beta-barrel with a hydrodynamic volume of 78 +/- 5 nm3. In contrast, the total fluorescence (525 +/- 50 nm) of the excited neutral state of S65T reveals a strong correlation between the fluorescence lifetime, structural conformation, and pH. The average fluorescence lifetime of the excited neutral state of S65T as a function of pH yields pKa approximately 5.9 in agreement with literature values using steady-state techniques. In contrast to the intact beta-barrel at high pH, the anisotropy of neutral S65T (at pH 相似文献   

20.
Green fluorescent protein and its mutants have become valuable tools in molecular biology. They also provide systems rich in photophysical and photochemical phenomena of which an understanding is important for the development of new and optimized variants of GFP. Surprisingly, not a single NMR study has been reported on GFPs until now, possibly because of their high tendency to aggregate. Here, we report the (19)F nuclear magnetic resonance (NMR) studies on mutants of the green fluorescent protein (GFP) and cyan fluorescent protein (CFP) labeled with fluorinated tryptophans that enabled the detection of slow molecular motions in these proteins. The concerted use of dynamic NMR and (19)F relaxation measurements, supported by temperature, concentration- and folding-dependent experiments provides direct evidence for the existence of a slow exchange process between two different conformational states of CFP. (19)F NMR relaxation and line shape analysis indicate that the time scale of exchange between these states is in the range of 1.2-1.4 ms. Thermodynamic analysis revealed a difference in enthalpy (Delta)H(0) = (18.2 +/- 3.8) kJ/mol and entropy T(Delta)S(0) = (19.6 +/- 1.2) kJ/mol at T = 303 K for the two states involved in the exchange process, indicating an entropy-enthalpy compensation. The free energy of activation was estimated to be approximately 60 kJ/mol. Exchange between two conformations, either of the chromophore itself or more likely of the closely related histidine 148, is suggested to be the structural process underlying the conformational mobility of GFPs. The possibility to generate a series of single-atom exchanges ("atomic mutations") like H --> F in this study offers a useful approach for characterizing and quantifying dynamic processes in proteins by NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号