首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Medical waste has increased in the past 3 years as a result of the coronavirus disease 2019 (COVID-19) pandemic. This condition is expected to exacerbate due to the growing healthcare markets and aging population, posing health threats to the public via environmental footprints. To alleviate these impacts, there is an urgent need for medical waste management. This article highlights the drawbacks of current disposal methods and the potential of medical waste reuse and recycling, emphasizing the processes, materials, and chemistry involved in each practice. Further discussion is provided on the chemical and mechanical recycling of plastics as the dominating material in biomedical applications, and possible strategies and challenges in recycling and reusing biomedical materials are explored in this review.  相似文献   

3.
    
The fashion industry is now in the eye of the storm for what concerns sustainability because of the enormous impact that such a business area has on the environment. To exploit the full potential for circular economy implementation, the fashion industry requires urgent changes adapting much more conscientious business practices, driving consumers to change their perceptions and behaviors toward circular products and services. The renunciation of greenwashing practices and the use of strategy focused on regaining consumer's trust will increase the positive sentiment toward the fashion brands. This work demonstrates to what extent greenwashing may jeopardize the fashion industry in addressing challenges related to the implementation of more sustainable circular economy in the context of designing with intention of recycle, reduction of by-products, lower energy consumption, and wise purchase habits.This study provides guides for fashion brands about the risks and gains related to the greenwashing practices and sustainable fashion industry. This study sketches also future research opportunities in more sustainable holistic approach of a products’ life cycle and how this can be translated into clear, transparent, or reliable certification schemes to prevent the misleading and dishonest marketing strategies helping the consumers to make a responsible choice.  相似文献   

4.
    
Shaping a sustainable future is closely tied to the development of advanced plastic recycling technologies. As global recycling rates remain low, the lion's share of post-consumer plastics is either incinerated or disposed of in landfills. This unbalanced plastic waste management not only poses severe environmental risks, but also entails an irrevocable loss of chemical resources that are embedded in synthetic polymers. To give plastic waste a new life, a series of photocatalytic methods has recently been reported that convert polymers directly into value-added organic molecules. These approaches operate at ambient temperature, show high reactivity/selectivity, and provide alternative reaction pathways as compared to thermal depolymerizations. This Minireview highlights the scientific breakthroughs in upcycling polymers through state-of-the-art photocatalysis under environmentally benign conditions.  相似文献   

5.
    
The accumulation of plastic waste, due to lack of recycling, has led to serious environmental pollution. Although mechanical recycling can alleviate this issue, it inevitably reduces the molecular weight and weakens the mechanical properties of materials and is not suitable for mixed materials. Chemical recycling, on the other hand, breaks the polymer into monomers or small-molecule constituents, allowing for the preparation of materials of quality comparable to that of the virgin polymers and can be applied to mixed materials. Mechanochemical degradation and recycling leverages the advantages of mechanical techniques, such as scalability and efficient energy use, to achieve chemical recycling. We summarize recent progress in mechanochemical degradation and recycling of synthetic polymers, including both commercial polymers and those designed for more efficient mechanochemical degradation. We also point out the limitations of mechanochemical degradation and present our perspectives on how the challenges can be mitigated for a circular polymer economy.  相似文献   

6.
    
Noble metals exhibit broad arrange of applications in industry and several aspects of human life which are becoming more and more prevalent in modern times. Due to their limited sources and constantly and consistently expanding demand, recycling of secondary and waste materials must accompany the traditional mineral extractions. This Minireview covers the most recent solvometallurgical developments in regeneration of Pd, Pt, Rh, Ru, Ir, Os, Ag and Au with emphasis on sustainability and selectivity. Processing—by selective oxidative dissolution, reductive precipitation, solvent extraction, co-precipitation, membrane transfer and trapping to solid media—of eligible multi-metal substrates for recycling from waste printed circuit boards to end-of-life automotive catalysts are discussed. Outlook for possible future direction for noble metal recycling is proposed with emphasis on sustainable approaches.  相似文献   

7.
    
To achieve a sustainable circular economy, polymer production must start transitioning to recycled and biobased feedstock and accomplish CO2 emission neutrality. This is not only true for structural polymers, such as in packaging or engineering applications, but also for functional polymers in liquid formulations, such as adhesives, lubricants, thickeners or dispersants. At their end of life, polymers must be either collected and recycled via a technical pathway, or be biodegradable if they are not collectable. Advances in polymer chemistry and applications, aided by computational material science, open the way to addressing these issues comprehensively by designing for recyclability and biodegradability. This Review explores how scientific progress, together with emerging regulatory frameworks, societal expectations and economic boundary conditions, paint pathways for the transformation towards a circular economy of polymers.  相似文献   

8.
    
Current search for more sustainable plastics seeks to redesign polymers possessing both chemical recyclability to monomer for a circular plastics economy and desirable performance that can rival or even exceed today's non-recyclable or hard-to-recycle petroleum-based incumbents. However, within a traditional monomer framework it is challenging to optimize, concurrently, contrasting polymerizability/depolymerizability and recyclability/performance properties. Here, we highlight the emerging hybrid monomer design strategy to develop intrinsically circular polymers with tunable performance properties, aiming to unify desired, but otherwise conflicting, properties in a single monomer. Conceptually, this design hybridizes parent monomer pairs of contrasting, mismatching, or matching properties into offspring monomers that not only unify the above-described conflicting properties but also radically alter the resultant polymer properties far beyond the limits of what either parent homopolymers or their copolymers can achieve.  相似文献   

9.
    
Denim is recognized across the globe for its vintage worn out effect, rough, and tough look along with comfort. Its market share is growing tremendously due to its popularity in all segments of consumers. Despite several advantages, denim manufacturing negatively impacts the environment as it is associated with the use of large amount of water, energy, chemicals, and emission of greenhouse gases. This paper highlights the potential of digital laser technology and waterless ozone technology to promote sustainable chemistry by reducing environmental pollution in denim manufacturing. Using the extant literature and collecting data from two different companies, this paper highlights the sustainable technologies in denim chemical processing and their significance in circular fashion (CF). It was found that the use of digital laser technology in denim patterning, color fading, and surface engraving reduced energy and water consumption; saved a significant amount of chemicals; and prevented effluents from getting discharged to the water bodies. Similarly, the application of ozone in denim washing and color fading helped to resolve the above-mentioned issues in denim manufacturing. The findings from two Vietnamese fashion companies showed that using laser and ozone technologies not only help to achieve sustainability but also lead toward fashion circularity.  相似文献   

10.
    
In the past 15 years, we've experienced an unprecedented series of crises, including financial (2008), health (2020), and most recently the supply chain disruptions and the energy emergency in Europe, caused by the war in Ukraine (2022). On top of that, climate change still poses a serious threat to our lives and our planet. These interconnected challenges create tremendous societal problems and compromise the viability of the chemical industry in an environment of price volatility and high inflation. Thus, the International Union of Pure and Applied Chemistry (IUPAC) has launched a series of actions to tackle this and raise awareness of the role of chemistry in solving our major threats. Since 2019, IUPAC has identified the “Top Ten Emerging Technologies in Chemistry” to connect chemical researchers with industry, bridging the gap between science and innovation, maintaining the current competitiveness of the chemical industry, as well as tackling our most pressing global challenges.  相似文献   

11.
作为微电子器件的理想电源,全固态薄膜锂电池(TFB)已经被广泛地研究了几十年,并开始进入商业化应用。然而,目前关于失效TFB的回收与再利用的研究几乎没有,这将会阻碍TFB的可持续发展。本工作针对因金属锂负极失效而造成电池失效的TFB,提出了一种简单的基于最常见LiCoO2 (LCO)/LiPON/Li TFB (F-TFB)的直接回收再利用的方法。研究发现,F-TFB中的金属锂负极薄膜在循环过程会被部分氧化从而造成电池失效。我们提出利用无水乙醇溶液有效地溶解并去除F-TFB上失效的金属锂负极部分,从而快速地回收底层的LCO/LiPON薄膜。结构分析和表面分析结果表明,回收的LCO/LiPON薄膜中的LCO正极的晶体结构、LCO/LiPON的界面结构以及LiPON电解质的表面保持完好,使其再利用成为了可能。进一步地,我们在回收的LCO/LiPON薄膜上依次沉积了LiPON和Li薄膜,构建得到了电化学性能恢复的LCO/LiPON/Li TFB,并获得了与新制备的TFB相一致的比容量(0.223 mAh∙cm−2)、良好的倍率性能和循环寿命(500次循环后容量保持率为77.3%)。这种简单而有效的回收再利用方法有望延长固态电池的使用寿命,减少能源和资源消耗,促进固态电池的可持续发展。  相似文献   

12.
The use of fluorous ammonium salts as metal-free catalysts for the direct condensation of equimolar amounts of carboxylic acids and aliphatic alcohols has been investigated. Esterification reactions were thus conveniently carried out under mild fluorous biphasic conditions, in the presence of 1 mol % of fluorous ammonium triflate and without recourse to any additional water removal technique. Good to excellent ester yields were obtained in the case of primary and secondary aliphatic alcohols. The fluorous salt was easily recovered by simple phase separation and reused at least three times without considerable loss of activity.  相似文献   

13.
14.
Chemical recycling of plastic wastes is top among the effective management of the solid wastes. Particularly the post-consumer polyethylene terephthalate (PET) plastic wastes mainly generated from the disposal of beverage bottles and placed third most produced polymeric waste. However, PET wastes could be chemically recycled using several types of homo-/heterogeneous acid or base catalysts, and an effective recycling process has yet to be achieved. Therefore, the present short review is intended to display recent reports on the depolymerization of PET polymer wastes. The review aimed to cover glycolysis and aminolytic depolymerization using various catalytic systems. There is a wide spectrum of catalytic systems such as metal oxides, ionic liquids, organic bases, nanoparticles, porous materials and microwave-assisted rapid depolymerization methods have been developed toward the yield enhancement of the depolymerized products. Ideologically, the present review would benefit the researchers in familiarizing themselves with the latest developments in this field.  相似文献   

15.
    
Interfacial solar desalination is an emerging technology for freshwater production, but the finding of novel solar evaporators is still challenging. In the present research, graphitic carbon foam (CF) was synthesized from the upcycling of waste plastic polyethylene terephthalate (PET) waste bottles functionalized with carrollite CuCo2S4 as a photothermal layer. Analytical characterization [X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS)] confirms the functionalization of carrollite CuCo2S4 on graphitic carbon foam. The UV-Vis spectroscopy analysis showed an enhanced optical absorption in the UV-Vis-near IR region (>96%) for functionalized CuCo2S4-CF foam compared to carbon foam (67%). The interfacial solar desalination experiment presented a significantly enhanced evaporation rate of 2.4 kg·m-2·h-1 for CuCo2S4-CF compared to that of CF (1.60 kg·m-2·h-1) and that of CuCo2S4 (1.60 kg·m-2·h-1). The obtained results proved that the newly synthesized CuCo2S4-CF from the upcycled plastic into new material for the photothermal desalination process can enhance the practice of a circular economy to produce fresh water.  相似文献   

16.
Understanding the current drivers, potentialities and challenges related to the role of chemical sciences in a circular economy is of fundamental importance when bioresources are taken into account. Particularly, after launching the European Commission action plan in 2015, the creation, development and use of green chemicals derived from renewable materials can be seen as more than simple opportunities in research and innovation. In this paper, the latest trends related to green chemical products, processes and services concerning eco-design and solution approaches will be focused on, using an orange waste biorefinery as a case study. Emphasis will be given to establishing new relationships with goods, materials, energy and, mostly, long-term cooperation and integration models among all partners involved.  相似文献   

17.
The industrial processing of meat and dairy production uses large amounts of fresh water, therefore, generates a significant volume of wastewaters. The treatment of these effluents has been performed using different technologies from biological to electrochemical advanced oxidation processes. Under the circular economy concept, the lack of available freshwater resources has increased the interest in reusing wastewater from slaughterhouses, and even in the recovering of by-products.This article reviews the application of electrochemical treatments to slaughterhouse and dairy wastewaters. In addition, an overview of added-value products and energy recovery from these industrial wastewaters is also presented with future perspectives.  相似文献   

18.
    
A mixture of zeolite X and A, derived from coal fly ash (CFA), was protonated and utilized as an acid catalyst to decompose single-use plastics (SUP) waste into lighter hydrocarbons. Low-density polyethylene (LDPE) was selected as the source of SUP, and this study aimed to investigate the catalytic effects of the protonated CFA-derived zeolite (H-XA) as an economical option on the LDPE pyrolysis temperature and output. CFA converted into H-XA through the conventional alkali fusion, followed by sonication and simplified hydrothermal and protonation processes. The impact of the alkali agent ratio on the resulting product was investigated, and outcomes were evaluated. The product with optimum properties was then selected for investigation in the LDPE pyrolysis studies. Finally, the results were compared with commercial Protonated Zeolite Socony Mobil-5 (H-ZSM5) and thermal decomposition without catalysts. Regarding LDPE degradation temperature, H-XA could lower that by 97 °C compared to thermal degradation, which was almost the same as commercial H-ZSM5 with 110 °C. The pyrograms obtained through the Pyrolysis-gas chromatography-mass spectrometry (Py-GCMS) analysis indicated the elimination of heavier hydrocarbons in the presence of H-XA and the product spectra laid in the range of C3 to C9, which was entirely different from the LDPE with hydrocarbons of varying lengths. Moreover, kinetic studies on the LDPE decomposition reactions in this work have revealed that LDPE conversion occurs at a lower activation energy level in the presence of H-XA, which is comparable to the energy level observed when H-ZSM5 is used as the catalyst. The synthesis of H-XA with desirable catalytic activity, such as the ability to lower the LDPE degradation temperature and make lighter hydrocarbons as the pyrolysis output, suggests the great potential of the CFA-based acid catalyst for use in SUP recycling. This represent a game of waste versus waste within the framework of the circular economy, where the environment is the ultimate winner.  相似文献   

19.
    
Lignin, as an abundant natural polymer with interesting mechanical, antimicrobial, and antioxidant properties, has the possibility to produce numerous chemicals and biofuels of current interest. However, the structural recalcitrance, heterogeneity, and complex extraction methods of lignin can hinder its transformation into value-added materials. Therefore, the research community is exploring innovative bioconversion technologies capable of effectively valorizing lignin. Thus, effective bioconversion and deconstruction methods have been recently studied. In this review, we first define lignin as a versatile raw material considering its characteristics, properties, and abundance. Then, lignin valorization is described in terms of the current opportunities and technical challenges. Finally, we discuss the industrial potential of lignin-derived products such as biofuels, biopolymers, biopesticides, and fertilizers. Those lignin-derived products are highly valuable for the energy and food industries, which are two main sectors challenged by the rapid growth of population, urbanization, and consumption. Thus, progress on lignin valorization would represent significant advancements in the Sustainable Development Goals (SDGs) and circular economy aspects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号